805 resultados para LEARNING OBJECTS REPOSITORIES - MODELS
Resumo:
Shared attention is a type of communication very important among human beings. It is sometimes reserved for the more complex form of communication being constituted by a sequence of four steps: mutual gaze, gaze following, imperative pointing and declarative pointing. Some approaches have been proposed in Human-Robot Interaction area to solve part of shared attention process, that is, the most of works proposed try to solve the first two steps. Models based on temporal difference, neural networks, probabilistic and reinforcement learning are methods used in several works. In this article, we are presenting a robotic architecture that provides a robot or agent, the capacity of learning mutual gaze, gaze following and declarative pointing using a robotic head interacting with a caregiver. Three learning methods have been incorporated to this architecture and a comparison of their performance has been done to find the most adequate to be used in real experiment. The learning capabilities of this architecture have been analyzed by observing the robot interacting with the human in a controlled environment. The experimental results show that the robotic head is able to produce appropriate behavior and to learn from sociable interaction.
Resumo:
Neutron stars are some of the most fascinating objects in Nature. Essentially all aspects of physics seems to be represented inside them. Their cores are likely to contain deconfined quarks, hyperons and other exotic phases of matter in which the strong interaction is the dominant force. The inner region of their solid crust is penetrated by superfluid neutrons and their magnetic fields may reach well over 1012 Gauss. Moreover, their extreme mean densities, well above the densities of nuclei, and their rapid rotation rates makes them truly relativistic both in the special as well as in the general sense. This thesis deals with a small subset of these phenomena. In particular the exciting possibility of trapping of gravita-tional waves is examined from a theoretical point of view. It is shown that the standard condition R < 3M is not essential to the trapping mechanism. This point is illustrated using the elegant tool provided by the optical geometry. It is also shown that a realistic equation of state proposed in the literature allows stable neutron star models with closed circular null orbits, something which is closely related to trapped gravitational waves. Furthermore, the general relativistic theory of elasticity is reviewed and applied to stellar models. Both static equilibrium as well as radially oscillating configurations with elasticsources are examined. Finally, Killing tensors are considered and their applicability to modeling of stars is discussed
Resumo:
This thesis is a collection of five independent but closely related studies. The overall purpose is to approach the analysis of learning outcomes from a perspective that combines three major elements, namely lifelonglifewide learning, human capital, and the benefits of learning. The approach is based on an interdisciplinary perspective of the human capital paradigm. It considers the multiple learning contexts that are responsible for the development of embodied potential – including formal, nonformal and informal learning – and the multiple outcomes – including knowledge, skills, economic, social and others– that result from learning. The studies also seek to examine the extent and relative influence of learning in different contexts on the formation of embodied potential and how in turn that affects economic and social well being. The first study combines the three major elements, lifelonglifewide learning, human capital, and the benefits of learning into one common conceptual framework. This study forms a common basis for the four empirical studies that follow. All four empirical studies use data from the International Adult Literacy Survey (IALS) to investigate the relationships among the major elements of the conceptual framework presented in the first study. Study I. A conceptual framework for the analysis of learning outcomes This study brings together some key concepts and theories that are relevant for the analysis of learning outcomes. Many of the concepts and theories have emerged from varied disciplines including economics, educational psychology, cognitive science and sociology, to name only a few. Accordingly, some of the research questions inherent in the framework relate to different disciplinary perspectives. The primary purpose is to create a common basis for formulating and testing hypotheses as well as to interpret the findings in the empirical studies that follow. In particular, the framework facilitates the process of theorizing and hypothesizing on the relationships and processes concerning lifelong learning as well as their antecedents and consequences. Study II. Determinants of literacy proficiency: A lifelong-lifewide learning perspective This study investigates lifelong and lifewide processes of skill formation. In particular, it seeks to estimate the substitutability and complementarity effects of learning in multiple settings over the lifespan on literacy skill formation. This is done by investigating the predictive capacity of major determinants of literacy proficiency that are associated with a variety of learning contexts including school, home, work, community and leisure. An identical structural model based on previous research is fitted to the IALS data for 18 countries. The results show that even after accounting for all factors, education remains the most important predictor of literacy proficiency. In all countries, however, the total effect of education is significantly mediated through further learning occurring at work, at home and in the community. Therefore, the job and other literacy related factors complement education in predicting literacy proficiency. This result points to a virtual cycle of lifelong learning, particularly to how educational attainment influences other learning behaviours throughout life. In addition, results show that home background as measured by parents’ education is also a strong predictor of literacy proficiency, but in many countries this occurs only if a favourable home background is complemented with some post-secondary education. Study III. The effect of literacy proficiency on earnings: An aggregated occupational approach using the Canadian IALS data This study uses data from the Canadian Adult Literacy Survey to estimate the earnings return to literacy skills. The approach adapts a labour segmented view of the labour market by aggregating occupations into seven types, enabling the estimation of the variable impact of literacy proficiency on earnings, both within and between different types of occupations. This is done using Hierarchical Linear Modeling (HLM). The method used to construct the aggregated occupational classification is based on analysis that considers the role of cognitive and other skills in relation to the nature of occupational tasks. Substantial premiums are found to be associated with some occupational types even after adjusting for within occupational differences in individual characteristics such as schooling, literacy proficiency, labour force experience and gender. Average years of schooling and average levels of literacy proficiency at the between level account for over two-thirds of the premiums. Within occupations, there are significant returns to schooling but they vary depending on the type of occupations. In contrast, the within occupational return of literacy proficiency is not necessarily significant. The latter depends on the type of occupation. Study IV: Determinants of economic and social outcomes from a lifewide learning perspective in Canada In this study the relationship between learning in different contexts, which span the lifewide learning dimension, and individual earnings on the one hand and community participation on the other are examined in separate but comparable models. Data from the Canadian Adult Literacy Survey are used to estimate structural models, which correspond closely to the common conceptual framework outlined in Study I. The findings suggest that the relationship between formal education and economic and social outcomes is complex with confounding effects. The results indicate that learning occurring in different contexts and for different reasons leads to different kinds of benefits. The latter finding suggests a potential trade-off between realizing economic and social benefits through learning that are taken for either job-related or personal-interest related reasons. Study V: The effects of learning on economic and social well being: A comparative analysis Using the same structural model as in Study IV, hypotheses are comparatively examined using the International Adult Literacy Survey data for Canada, Denmark, the Netherlands, Norway, the United Kingdom, and the United States. The main finding from Study IV is confirmed for an additional five countries, namely that the effect of initial schooling on well being is more complex than a direct one and it is significantly mediated by subsequent learning. Additionally, findings suggest that people who devote more time to learning for job-related reasons than learning for personal-interest related reasons experience higher levels of economic well being. Moreover, devoting too much time to learning for personal-interest related reasons has a negative effect on earnings except in Denmark. But the more time people devote to learning for personal-interest related reasons tends to contribute to higher levels of social well being. These results again suggest a trade-off in learning for different reasons and in different contexts.
Resumo:
Máster Universitario en Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI)
Resumo:
The research activity carried out during the PhD course was focused on the development of mathematical models of some cognitive processes and their validation by means of data present in literature, with a double aim: i) to achieve a better interpretation and explanation of the great amount of data obtained on these processes from different methodologies (electrophysiological recordings on animals, neuropsychological, psychophysical and neuroimaging studies in humans), ii) to exploit model predictions and results to guide future research and experiments. In particular, the research activity has been focused on two different projects: 1) the first one concerns the development of neural oscillators networks, in order to investigate the mechanisms of synchronization of the neural oscillatory activity during cognitive processes, such as object recognition, memory, language, attention; 2) the second one concerns the mathematical modelling of multisensory integration processes (e.g. visual-acoustic), which occur in several cortical and subcortical regions (in particular in a subcortical structure named Superior Colliculus (SC)), and which are fundamental for orienting motor and attentive responses to external world stimuli. This activity has been realized in collaboration with the Center for Studies and Researches in Cognitive Neuroscience of the University of Bologna (in Cesena) and the Department of Neurobiology and Anatomy of the Wake Forest University School of Medicine (NC, USA). PART 1. Objects representation in a number of cognitive functions, like perception and recognition, foresees distribute processes in different cortical areas. One of the main neurophysiological question concerns how the correlation between these disparate areas is realized, in order to succeed in grouping together the characteristics of the same object (binding problem) and in maintaining segregated the properties belonging to different objects simultaneously present (segmentation problem). Different theories have been proposed to address these questions (Barlow, 1972). One of the most influential theory is the so called “assembly coding”, postulated by Singer (2003), according to which 1) an object is well described by a few fundamental properties, processing in different and distributed cortical areas; 2) the recognition of the object would be realized by means of the simultaneously activation of the cortical areas representing its different features; 3) groups of properties belonging to different objects would be kept separated in the time domain. In Chapter 1.1 and in Chapter 1.2 we present two neural network models for object recognition, based on the “assembly coding” hypothesis. These models are networks of Wilson-Cowan oscillators which exploit: i) two high-level “Gestalt Rules” (the similarity and previous knowledge rules), to realize the functional link between elements of different cortical areas representing properties of the same object (binding problem); 2) the synchronization of the neural oscillatory activity in the γ-band (30-100Hz), to segregate in time the representations of different objects simultaneously present (segmentation problem). These models are able to recognize and reconstruct multiple simultaneous external objects, even in difficult case (some wrong or lacking features, shared features, superimposed noise). In Chapter 1.3 the previous models are extended to realize a semantic memory, in which sensory-motor representations of objects are linked with words. To this aim, the network, previously developed, devoted to the representation of objects as a collection of sensory-motor features, is reciprocally linked with a second network devoted to the representation of words (lexical network) Synapses linking the two networks are trained via a time-dependent Hebbian rule, during a training period in which individual objects are presented together with the corresponding words. Simulation results demonstrate that, during the retrieval phase, the network can deal with the simultaneous presence of objects (from sensory-motor inputs) and words (from linguistic inputs), can correctly associate objects with words and segment objects even in the presence of incomplete information. Moreover, the network can realize some semantic links among words representing objects with some shared features. These results support the idea that semantic memory can be described as an integrated process, whose content is retrieved by the co-activation of different multimodal regions. In perspective, extended versions of this model may be used to test conceptual theories, and to provide a quantitative assessment of existing data (for instance concerning patients with neural deficits). PART 2. The ability of the brain to integrate information from different sensory channels is fundamental to perception of the external world (Stein et al, 1993). It is well documented that a number of extraprimary areas have neurons capable of such a task; one of the best known of these is the superior colliculus (SC). This midbrain structure receives auditory, visual and somatosensory inputs from different subcortical and cortical areas, and is involved in the control of orientation to external events (Wallace et al, 1993). SC neurons respond to each of these sensory inputs separately, but is also capable of integrating them (Stein et al, 1993) so that the response to the combined multisensory stimuli is greater than that to the individual component stimuli (enhancement). This enhancement is proportionately greater if the modality-specific paired stimuli are weaker (the principle of inverse effectiveness). Several studies have shown that the capability of SC neurons to engage in multisensory integration requires inputs from cortex; primarily the anterior ectosylvian sulcus (AES), but also the rostral lateral suprasylvian sulcus (rLS). If these cortical inputs are deactivated the response of SC neurons to cross-modal stimulation is no different from that evoked by the most effective of its individual component stimuli (Jiang et al 2001). This phenomenon can be better understood through mathematical models. The use of mathematical models and neural networks can place the mass of data that has been accumulated about this phenomenon and its underlying circuitry into a coherent theoretical structure. In Chapter 2.1 a simple neural network model of this structure is presented; this model is able to reproduce a large number of SC behaviours like multisensory enhancement, multisensory and unisensory depression, inverse effectiveness. In Chapter 2.2 this model was improved by incorporating more neurophysiological knowledge about the neural circuitry underlying SC multisensory integration, in order to suggest possible physiological mechanisms through which it is effected. This endeavour was realized in collaboration with Professor B.E. Stein and Doctor B. Rowland during the 6 months-period spent at the Department of Neurobiology and Anatomy of the Wake Forest University School of Medicine (NC, USA), within the Marco Polo Project. The model includes four distinct unisensory areas that are devoted to a topological representation of external stimuli. Two of them represent subregions of the AES (i.e., FAES, an auditory area, and AEV, a visual area) and send descending inputs to the ipsilateral SC; the other two represent subcortical areas (one auditory and one visual) projecting ascending inputs to the same SC. Different competitive mechanisms, realized by means of population of interneurons, are used in the model to reproduce the different behaviour of SC neurons in conditions of cortical activation and deactivation. The model, with a single set of parameters, is able to mimic the behaviour of SC multisensory neurons in response to very different stimulus conditions (multisensory enhancement, inverse effectiveness, within- and cross-modal suppression of spatially disparate stimuli), with cortex functional and cortex deactivated, and with a particular type of membrane receptors (NMDA receptors) active or inhibited. All these results agree with the data reported in Jiang et al. (2001) and in Binns and Salt (1996). The model suggests that non-linearities in neural responses and synaptic (excitatory and inhibitory) connections can explain the fundamental aspects of multisensory integration, and provides a biologically plausible hypothesis about the underlying circuitry.
Resumo:
Magnetic resonance imaging (MRI) is today precluded to patients bearing active implantable medical devices AIMDs). The great advantages related to this diagnostic modality, together with the increasing number of people benefiting from implantable devices, in particular pacemakers(PM)and carioverter/defibrillators (ICD), is prompting the scientific community the study the possibility to extend MRI also to implanted patients. The MRI induced specific absorption rate (SAR) and the consequent heating of biological tissues is one of the major concerns that makes patients bearing metallic structures contraindicated for MRI scans. To date, both in-vivo and in-vitro studies have demonstrated the potentially dangerous temperature increase caused by the radiofrequency (RF) field generated during MRI procedures in the tissues surrounding thin metallic implants. On the other side, the technical evolution of MRI scanners and of AIMDs together with published data on the lack of adverse events have reopened the interest in this field and suggest that, under given conditions, MRI can be safely performed also in implanted patients. With a better understanding of the hazards of performing MRI scans on implanted patients as well as the development of MRI safe devices, we may soon enter an era where the ability of this imaging modality may be more widely used to assist in the appropriate diagnosis of patients with devices. In this study both experimental measures and numerical analysis were performed. Aim of the study is to systematically investigate the effects of the MRI RF filed on implantable devices and to identify the elements that play a major role in the induced heating. Furthermore, we aimed at developing a realistic numerical model able to simulate the interactions between an RF coil for MRI and biological tissues implanted with a PM, and to predict the induced SAR as a function of the particular path of the PM lead. The methods developed and validated during the PhD program led to the design of an experimental framework for the accurate measure of PM lead heating induced by MRI systems. In addition, numerical models based on Finite-Differences Time-Domain (FDTD) simulations were validated to obtain a general tool for investigating the large number of parameters and factors involved in this complex phenomenon. The results obtained demonstrated that the MRI induced heating on metallic implants is a real risk that represents a contraindication in extending MRI scans also to patient bearing a PM, an ICD, or other thin metallic objects. On the other side, both experimental data and numerical results show that, under particular conditions, MRI procedures might be consider reasonably safe also for an implanted patient. The complexity and the large number of variables involved, make difficult to define a unique set of such conditions: when the benefits of a MRI investigation cannot be obtained using other imaging techniques, the possibility to perform the scan should not be immediately excluded, but some considerations are always needed.
Resumo:
In the last years of research, I focused my studies on different physiological problems. Together with my supervisors, I developed/improved different mathematical models in order to create valid tools useful for a better understanding of important clinical issues. The aim of all this work is to develop tools for learning and understanding cardiac and cerebrovascular physiology as well as pathology, generating research questions and developing clinical decision support systems useful for intensive care unit patients. I. ICP-model Designed for Medical Education We developed a comprehensive cerebral blood flow and intracranial pressure model to simulate and study the complex interactions in cerebrovascular dynamics caused by multiple simultaneous alterations, including normal and abnormal functional states of auto-regulation of the brain. Individual published equations (derived from prior animal and human studies) were implemented into a comprehensive simulation program. Included in the normal physiological modelling was: intracranial pressure, cerebral blood flow, blood pressure, and carbon dioxide (CO2) partial pressure. We also added external and pathological perturbations, such as head up position and intracranial haemorrhage. The model performed clinically realistically given inputs of published traumatized patients, and cases encountered by clinicians. The pulsatile nature of the output graphics was easy for clinicians to interpret. The manoeuvres simulated include changes of basic physiological inputs (e.g. blood pressure, central venous pressure, CO2 tension, head up position, and respiratory effects on vascular pressures) as well as pathological inputs (e.g. acute intracranial bleeding, and obstruction of cerebrospinal outflow). Based on the results, we believe the model would be useful to teach complex relationships of brain haemodynamics and study clinical research questions such as the optimal head-up position, the effects of intracranial haemorrhage on cerebral haemodynamics, as well as the best CO2 concentration to reach the optimal compromise between intracranial pressure and perfusion. We believe this model would be useful for both beginners and advanced learners. It could be used by practicing clinicians to model individual patients (entering the effects of needed clinical manipulations, and then running the model to test for optimal combinations of therapeutic manoeuvres). II. A Heterogeneous Cerebrovascular Mathematical Model Cerebrovascular pathologies are extremely complex, due to the multitude of factors acting simultaneously on cerebral haemodynamics. In this work, the mathematical model of cerebral haemodynamics and intracranial pressure dynamics, described in the point I, is extended to account for heterogeneity in cerebral blood flow. The model includes the Circle of Willis, six regional districts independently regulated by autoregulation and CO2 reactivity, distal cortical anastomoses, venous circulation, the cerebrospinal fluid circulation, and the intracranial pressure-volume relationship. Results agree with data in the literature and highlight the existence of a monotonic relationship between transient hyperemic response and the autoregulation gain. During unilateral internal carotid artery stenosis, local blood flow regulation is progressively lost in the ipsilateral territory with the presence of a steal phenomenon, while the anterior communicating artery plays the major role to redistribute the available blood flow. Conversely, distal collateral circulation plays a major role during unilateral occlusion of the middle cerebral artery. In conclusion, the model is able to reproduce several different pathological conditions characterized by heterogeneity in cerebrovascular haemodynamics and can not only explain generalized results in terms of physiological mechanisms involved, but also, by individualizing parameters, may represent a valuable tool to help with difficult clinical decisions. III. Effect of Cushing Response on Systemic Arterial Pressure. During cerebral hypoxic conditions, the sympathetic system causes an increase in arterial pressure (Cushing response), creating a link between the cerebral and the systemic circulation. This work investigates the complex relationships among cerebrovascular dynamics, intracranial pressure, Cushing response, and short-term systemic regulation, during plateau waves, by means of an original mathematical model. The model incorporates the pulsating heart, the pulmonary circulation and the systemic circulation, with an accurate description of the cerebral circulation and the intracranial pressure dynamics (same model as in the first paragraph). Various regulatory mechanisms are included: cerebral autoregulation, local blood flow control by oxygen (O2) and/or CO2 changes, sympathetic and vagal regulation of cardiovascular parameters by several reflex mechanisms (chemoreceptors, lung-stretch receptors, baroreceptors). The Cushing response has been described assuming a dramatic increase in sympathetic activity to vessels during a fall in brain O2 delivery. With this assumption, the model is able to simulate the cardiovascular effects experimentally observed when intracranial pressure is artificially elevated and maintained at constant level (arterial pressure increase and bradicardia). According to the model, these effects arise from the interaction between the Cushing response and the baroreflex response (secondary to arterial pressure increase). Then, patients with severe head injury have been simulated by reducing intracranial compliance and cerebrospinal fluid reabsorption. With these changes, oscillations with plateau waves developed. In these conditions, model results indicate that the Cushing response may have both positive effects, reducing the duration of the plateau phase via an increase in cerebral perfusion pressure, and negative effects, increasing the intracranial pressure plateau level, with a risk of greater compression of the cerebral vessels. This model may be of value to assist clinicians in finding the balance between clinical benefits of the Cushing response and its shortcomings. IV. Comprehensive Cardiopulmonary Simulation Model for the Analysis of Hypercapnic Respiratory Failure We developed a new comprehensive cardiopulmonary model that takes into account the mutual interactions between the cardiovascular and the respiratory systems along with their short-term regulatory mechanisms. The model includes the heart, systemic and pulmonary circulations, lung mechanics, gas exchange and transport equations, and cardio-ventilatory control. Results show good agreement with published patient data in case of normoxic and hyperoxic hypercapnia simulations. In particular, simulations predict a moderate increase in mean systemic arterial pressure and heart rate, with almost no change in cardiac output, paralleled by a relevant increase in minute ventilation, tidal volume and respiratory rate. The model can represent a valid tool for clinical practice and medical research, providing an alternative way to experience-based clinical decisions. In conclusion, models are not only capable of summarizing current knowledge, but also identifying missing knowledge. In the former case they can serve as training aids for teaching the operation of complex systems, especially if the model can be used to demonstrate the outcome of experiments. In the latter case they generate experiments to be performed to gather the missing data.
Resumo:
The aim of this thesis was to investigate the respective contribution of prior information and sensorimotor constraints to action understanding, and to estimate their consequences on the evolution of human social learning. Even though a huge amount of literature is dedicated to the study of action understanding and its role in social learning, these issues are still largely debated. Here, I critically describe two main perspectives. The first perspective interprets faithful social learning as an outcome of a fine-grained representation of others’ actions and intentions that requires sophisticated socio-cognitive skills. In contrast, the second perspective highlights the role of simpler decision heuristics, the recruitment of which is determined by individual and ecological constraints. The present thesis aims to show, through four experimental works, that these two contributions are not mutually exclusive. A first study investigates the role of the inferior frontal cortex (IFC), the anterior intraparietal area (AIP) and the primary somatosensory cortex (S1) in the recognition of other people’s actions, using a transcranial magnetic stimulation adaptation paradigm (TMSA). The second work studies whether, and how, higher-order and lower-order prior information (acquired from the probabilistic sampling of past events vs. derived from an estimation of biomechanical constraints of observed actions) interacts during the prediction of other people’s intentions. Using a single-pulse TMS procedure, the third study investigates whether the interaction between these two classes of priors modulates the motor system activity. The fourth study tests the extent to which behavioral and ecological constraints influence the emergence of faithful social learning strategies at a population level. The collected data contribute to elucidate how higher-order and lower-order prior expectations interact during action prediction, and clarify the neural mechanisms underlying such interaction. Finally, these works provide/open promising perspectives for a better understanding of social learning, with possible extensions to animal models.
Resumo:
Different types of proteins exist with diverse functions that are essential for living organisms. An important class of proteins is represented by transmembrane proteins which are specifically designed to be inserted into biological membranes and devised to perform very important functions in the cell such as cell communication and active transport across the membrane. Transmembrane β-barrels (TMBBs) are a sub-class of membrane proteins largely under-represented in structure databases because of the extreme difficulty in experimental structure determination. For this reason, computational tools that are able to predict the structure of TMBBs are needed. In this thesis, two computational problems related to TMBBs were addressed: the detection of TMBBs in large datasets of proteins and the prediction of the topology of TMBB proteins. Firstly, a method for TMBB detection was presented based on a novel neural network framework for variable-length sequence classification. The proposed approach was validated on a non-redundant dataset of proteins. Furthermore, we carried-out genome-wide detection using the entire Escherichia coli proteome. In both experiments, the method significantly outperformed other existing state-of-the-art approaches, reaching very high PPV (92%) and MCC (0.82). Secondly, a method was also introduced for TMBB topology prediction. The proposed approach is based on grammatical modelling and probabilistic discriminative models for sequence data labeling. The method was evaluated using a newly generated dataset of 38 TMBB proteins obtained from high-resolution data in the PDB. Results have shown that the model is able to correctly predict topologies of 25 out of 38 protein chains in the dataset. When tested on previously released datasets, the performances of the proposed approach were measured as comparable or superior to the current state-of-the-art of TMBB topology prediction.
Resumo:
The Alzheimer’s disease (AD), the most prevalent form of age-related dementia, is a multifactorial and heterogeneous neurodegenerative disease. The molecular mechanisms underlying the pathogenesis of AD are yet largely unknown. However, the etiopathogenesis of AD likely resides in the interaction between genetic and environmental risk factors. Among the different factors that contribute to the pathogenesis of AD, amyloid-beta peptides and the genetic risk factor apoE4 are prominent on the basis of genetic evidence and experimental data. ApoE4 transgenic mice have deficits in spatial learning and memory associated with inflammation and brain atrophy. Evidences suggest that apoE4 is implicated in amyloid-beta accumulation, imbalance of cellular antioxidant system and in apoptotic phenomena. The mechanisms by which apoE4 interacts with other AD risk factors leading to an increased susceptibility to the dementia are still unknown. The aim of this research was to provide new insights into molecular mechanisms of AD neurodegeneration, investigating the effect of amyloid-beta peptides and apoE4 genotype on the modulation of genes and proteins differently involved in cellular processes related to aging and oxidative balance such as PIN1, SIRT1, PSEN1, BDNF, TRX1 and GRX1. In particular, we used human neuroblastoma cells exposed to amyloid-beta or apoE3 and apoE4 proteins at different time-points, and selected brain regions of human apoE3 and apoE4 targeted replacement mice, as in vitro and in vivo models, respectively. All genes and proteins studied in the present investigation are modulated by amyloid-beta and apoE4 in different ways, suggesting their involvement in the neurodegenerative mechanisms underlying the AD. Finally, these proteins might represent novel potential diagnostic and therapeutic targets in AD.
Resumo:
One important metaphor, referred to biological theories, used to investigate on organizational and business strategy issues is the metaphor about heredity; an area requiring further investigation is the extent to which the characteristics of blueprints inherited from the parent, helps in explaining subsequent development of the spawned ventures. In order to shed a light on the tension between inherited patterns and the new trajectory that may characterize spawned ventures’ development we propose a model aimed at investigating which blueprints elements might exert an effect on business model design choices and to which extent their persistence (or abandonment) determines subsequent business model innovation. Under the assumption that academic and corporate institutions transmit different genes to their spin-offs, we hence expect to have heterogeneity in elements that affect business model design choices and its subsequent evolution. This is the reason why we carry on a twofold analysis in the biotech (meta)industry: under a multiple-case research design, business model and especially its fundamental design elements and themes scholars individuated to decompose the construct, have been thoroughly analysed. Our purpose is to isolate the dimensions of business model that may have been the object of legacy and the ones along which an experimentation and learning process is more likely to happen, bearing in mind that differences between academic and corporate might not be that evident as expected, especially considering that business model innovation may occur.
Resumo:
Small-scale dynamic stochastic general equilibrium have been treated as the benchmark of much of the monetary policy literature, given their ability to explain the impact of monetary policy on output, inflation and financial markets. One cause of the empirical failure of New Keynesian models is partially due to the Rational Expectations (RE) paradigm, which entails a tight structure on the dynamics of the system. Under this hypothesis, the agents are assumed to know the data genereting process. In this paper, we propose the econometric analysis of New Keynesian DSGE models under an alternative expectations generating paradigm, which can be regarded as an intermediate position between rational expectations and learning, nameley an adapted version of the "Quasi-Rational" Expectatations (QRE) hypothesis. Given the agents' statistical model, we build a pseudo-structural form from the baseline system of Euler equations, imposing that the length of the reduced form is the same as in the `best' statistical model.
Resumo:
Information is nowadays a key resource: machine learning and data mining techniques have been developed to extract high-level information from great amounts of data. As most data comes in form of unstructured text in natural languages, research on text mining is currently very active and dealing with practical problems. Among these, text categorization deals with the automatic organization of large quantities of documents in priorly defined taxonomies of topic categories, possibly arranged in large hierarchies. In commonly proposed machine learning approaches, classifiers are automatically trained from pre-labeled documents: they can perform very accurate classification, but often require a consistent training set and notable computational effort. Methods for cross-domain text categorization have been proposed, allowing to leverage a set of labeled documents of one domain to classify those of another one. Most methods use advanced statistical techniques, usually involving tuning of parameters. A first contribution presented here is a method based on nearest centroid classification, where profiles of categories are generated from the known domain and then iteratively adapted to the unknown one. Despite being conceptually simple and having easily tuned parameters, this method achieves state-of-the-art accuracy in most benchmark datasets with fast running times. A second, deeper contribution involves the design of a domain-independent model to distinguish the degree and type of relatedness between arbitrary documents and topics, inferred from the different types of semantic relationships between respective representative words, identified by specific search algorithms. The application of this model is tested on both flat and hierarchical text categorization, where it potentially allows the efficient addition of new categories during classification. Results show that classification accuracy still requires improvements, but models generated from one domain are shown to be effectively able to be reused in a different one.
Resumo:
In this thesis, the author presents a query language for an RDF (Resource Description Framework) database and discusses its applications in the context of the HELM project (the Hypertextual Electronic Library of Mathematics). This language aims at meeting the main requirements coming from the RDF community. in particular it includes: a human readable textual syntax and a machine-processable XML (Extensible Markup Language) syntax both for queries and for query results, a rigorously exposed formal semantics, a graph-oriented RDF data access model capable of exploring an entire RDF graph (including both RDF Models and RDF Schemata), a full set of Boolean operators to compose the query constraints, fully customizable and highly structured query results having a 4-dimensional geometry, some constructions taken from ordinary programming languages that simplify the formulation of complex queries. The HELM project aims at integrating the modern tools for the automation of formal reasoning with the most recent electronic publishing technologies, in order create and maintain a hypertextual, distributed virtual library of formal mathematical knowledge. In the spirit of the Semantic Web, the documents of this library include RDF metadata describing their structure and content in a machine-understandable form. Using the author's query engine, HELM exploits this information to implement some functionalities allowing the interactive and automatic retrieval of documents on the basis of content-aware requests that take into account the mathematical nature of these documents.
Resumo:
This work is focused on axions and axion like particles (ALPs) and their possible relation with the 3.55 keV photon line detected, in recent years, from galaxy clusters and other astrophysical objects. We focus on axions that come from string compactification and we study the vacuum structure of the resulting low energy 4D N=1 supergravity effective field theory. We then provide a model which might explain the 3.55 keV line through the following processes. A 7.1 keV dark matter axion decays in two light axions, which, in turn, are transformed into photons thanks to the Primakoff effect and the existence of a kinetic mixing between two U(1)s gauge symmetries belonging respectively to the hidden and the visible sector. We present two models, the first one gives an outcome inconsistent with experimental data, while the second can yield the desired result.