988 resultados para LCS-6 KRAS variant
Resumo:
Single crystals of Bi2V1-xGexO5.5-x/2 (x = 0.2, 0.4, and 0.6) were grown by slow cooling of melts. Bismuth vanadate transforms from an orthorhombic to a tetragonal structure and subsequently to an orthorhombic system when the Ge4+ concentration was varied from x = 0.2 to x = 0.6. All of these compositions crystallized in polar space groups (Aba2, F4mm, and Fmm2 for x = 0.2, 0.4, and 0.6, respectively). The structures were fully determined by single crystal X-ray diffraction studies, (C) 1999 Elsevier Science Ltd.
Resumo:
2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-hexadecafluorodecyl 1,10-ditosylate and its precursors were synthesized and characterized by H-1- and F-19-NMR spectroscopic methods and X-ray crystallography. These compounds are building blocks for the syntheses of the surfactants containing polyperfluoromethylene spacer. The molecule has extended all-trans conformation with molecular symmetry (1) over bar (C-i). There is a reasonably strong C-H ... O interaction in the crystal and there are two F ... F intermolecular contact distances less than the sum of van der Waals radii. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Synthesis of two designed hairpin peptides on 1,6-hexanediol diacrylate crosslinked polystyrene support using the standard solid phase methodology is described. Both the peptides are obtained in high yield and purity. The new polymeric system is an ideal support for the synthesis of hairpin peptides, which is a very difficult task by the solid phase method.
Resumo:
2D NMR spectroscopy has been used to determine the metal configuration in solution of three complexes, viz. [(eta(6)-p-cymene)Ru(L*)Cl] (1) and [(eta(6)-p-cymene)Ru(L*)(L')] (ClO4) (L' = H2O, 2; PPh3, 3), where L* is the anion of (S)-(1-phenylethyl)salicylaldimine. The complexes exist in two diastereomeric forms in solution. Both the (R-Ru,S-C)- and (S-Ru,S-C)-diastereomers display the presence of attractive, CH/pi interaction involving the phenyl group attached to the chiral carbon and the cymene ring hydrogens. This interaction restricts the rotation of the C*-N single bond and, as a result, two structural types with either the hydrogen atom attached to the chiral carbon (C*) or the methyl group attached to C* in close proximity of the cymene ring protons get stabilized. Using 2D NMR spectroscopy as a tool, the spatial interaction involving these protons are studied in order to obtain the metal configuration(s) of the diastereomeric complexes in solution. This technique has enabled us to determine the metal configuration as (R-Ru,S-C) for the major isomers of 1-3 in solution.
Resumo:
Binary and ternary blends of nylon-6/low density polyethylene (nylon-6/LDPE) and Nylon-6/LDPE/poly(ethylene-co-glycidyl methacrylate) were prepared by melt mixing. The blends exhibit two phase morphology with LDPE dispersed in the form of spherical domains in the nylon-6 matrix. The mechanical properties of the blends were measured by standard methods. It is shown that the use of the epoxy copolymer as a compatibilizer improves the impact strength of the blend as compared to nylon-6, which is attributed to better stress transfer across the interface due to the compatibilizer. The data for each mechanical property were also fitted into a best fit model equation and the method of steepest ascent was applied to arrive at the optimum composition of the blend for that property.
Resumo:
Using an efficient numerical scheme that exploits spatial symmetries and spin parity, we have obtained the exact low-lying eigenstates of exchange Hamiltonians for ferric wheels up to Fe-12. The largest calculation involves the Fe-12 ring which spans a Hilbert space dimension of about 145x10(6) for the M-S=0 subspace. Our calculated gaps from the singlet ground state to the excited triplet state agree well with the experimentally measured values. Study of the static structure factor shows that the ground state is spontaneously dimerized for ferric wheels. The spin states of ferric wheels can be viewed as quantized states of a rigid rotor with the gap between the ground and first excited states defining the inverse of the moment of inertia. We have studied the quantum dynamics of Fe-10 as a representative of ferric wheels. We use the low-lying states of Fe-10 to solve exactly the time-dependent Schrodinger equation and find the magnetization of the molecule in the presence of an alternating magnetic field at zero temperature. We observe a nontrivial oscillation of the magnetization which is dependent on the amplitude of the ac field. We have also studied the torque response of Fe-12 as a function of a magnetic field, which clearly shows spin-state crossover.
Resumo:
Methyl 5,6-Bis(2-methoxyphenyt)-1,4-dimethyl-7-oxobicyclo[2.2.1]hept-5-en-2-endo-carboxylate, a moderately crowded norbornenone ester, exhibits complex VT-DNMR behaviour. A similar behaviour is not seen in its 7-oxa analogue, showing that conformational transmission from position 7 has a crucial influence on the distance parameters that govern the dynamic processes involving the substituents on the bicycloheptene framework.
Resumo:
The effect of Fe content (0.2 to 0.6 pct) on the microstructure and mechanical properties of a cast Al-7Si-0.3Mg (LM 25/356) alloy has been investigated. Further, 1 pct mischmetal (MM) additions (a mixture of rare-earth (RE) elements) were made to these alloys, and their mechanical properties at room and at elevated temperatures (up to 200 degreesC) were evaluated. A structure-property correlation on this alloy was attempted using optical microstructure analysis, fractographs, X-ray diffraction, energy-dispersive analysis of X-rays (EDX), and quantitative metallography by image analysis. An increase in Fe content increased the volume percentage of Fe-bearing intermetallic compounds (beta and pi phases), contributing to the lower yield strength (YS), ultimate tensile strength (UTS), percentage elongation, and higher hardness. An addition of 1 pct MM to the alloys containing 0.2 and 0.6 pct Fe was found to refine the microstructure; modify the eutectic silicon and La, Ce, and Nd present in the MM; form different intermetallic compounds with Al, Si, Fe, and Mg; and improve the mechanical properties of the alloys both at room and elevated temperatures.
Resumo:
Equilibrium concentrations of various condensed and gaseous phases have been thermodynamically calculated, using the free energy minimization criterion, for the metalorganic chemical vapour deposition (MOCVD) of copper films using bis(2,2,6,6-tetramethyl-3,5-heptadionato)copper(II) as the precursor material. From among the many chemical species that may possibly result from the CVD process, only those expected on the basis of mass spectrometric analysis and chemical reasoning to be present at equilibrium, under different CVD conditions, are used in the thermodynamic calculations. The study predicts the deposition of pure, carbon-free copper in the inert atmosphere of argon as well as in the reactive hydrogen atmosphere, over a wide range of substrate temperatures and total reactor pressures. Thin films of copper, grown on SiO2/Si(100) substrates from this metalorganic precursor by low pressure CVD have been characterized by XRD and AES. The experimentally determined composition of CVD-grown copper films is in reasonable agreement with that predicted by thermodynamic analysis.
Resumo:
The facile method of solution combustion was used to synthesize gamma(L)-Bi(2)MoO(6). The material was crystallized in a purely crystalline orthorhombic phase with sizes varying from 300 to 500 nm. Because the band gap was 2.51 eV, the degradation of wide variety of cationic and anionic dyes was investigated under solar radiation. Despite the low surface area (< 1 m(2)/g) of the synthesized material, gamma(L)-Bi(2)MoO(6) showed high photocatalytic activity under solar radiation due to its electronic and morphological properties. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Results of a study of dc magnetization M(T,H), performed on a Nd(0.6)Pb(0.4)MnO(3) single crystal in the temperature range around T(C) (Curie temperature) which embraces the supposed critical region \epsilon\=\T-T(C)\/T(C)less than or equal to0.05 are reported. The magnetic data analyzed in the critical region using the Kouvel-Fisher method give the values for the T(C)=156.47+/-0.06 K and the critical exponents beta=0.374+/-0.006 (from the temperature dependence of magnetization) and gamma=1.329+/-0.003 (from the temperature dependence of initial susceptibility). The critical isotherm M(T(C),H) gives delta=4.54+/-0.10. Thus the scaling law gamma+beta=deltabeta is fulfilled. The critical exponents obey the single scaling equation of state M(H,epsilon)=epsilon(beta)f(+/-)(H/epsilon(beta+gamma)), where f(+) for T>T(C) and f(-) for T
Resumo:
Low-temperature dielectric measurements on FeTiMO(6) (M = Ta,Nb,Sb) rutile-type oxides at frequencies from 0.1 Hz to 10 MHz revealed anomalous dielectric relaxations with frequency dispersion. Unlike the high-temperature relaxor response of these materials, the low-temperature relaxations are polaronic in nature. The relationship between frequency and temperature of dielectric loss peak follows T(-1/4) behavior. The frequency dependence of ac conductivity shows the well-known universal dielectric response, while the dc conductivity follows Mott variable range hopping (VRH) behavior, confirming the polaronic origin of the observed dielectric relaxations. The frequency domain analysis of the dielectric spectra shows evidence for two relaxations, with the high-frequency relaxations following Mott VRH behavior more closely. Significantly, the Cr- and Ga-based analogs, CrTiNbO(6) and GaTiMO(6) (M = Ta,Nb), that were also studied, did not show these anomalies.
Resumo:
The non-H atoms of the title compound, C(11)H(6)BrFO(3), are essentially coplanar (r.m.s. deviation for all non-H atoms = 0.074 angstrom). In the crystal, the molecules are linked by C-H center dot center dot center dot O and C-H center dot center dot center dot Br interactions.
Resumo:
The title compound, C(14)H(17)FO(2), was obtained from anti-4a, 9a:8a,10a-diepoxy-1,4,4a,5,8,8a, 9,9a, 10,10a-decahydroanthracene via tandem hydrogen-fluoride-mediated epoxide ring-opening and transannular oxacyclization. With the two cyclohexene rings folded towards the oxygen bridge, the title tetracyclic fluoroalcohol molecule displays a conformation reminiscent of a pagoda. The crystal packing is effected via intermolecular O-H center dot center dot center dot O hydrogen bonds, which link the molecules into a zigzag chain along the b axis.