958 resultados para LATTICE DISTORTION
Resumo:
This paper proposes a solution to the problems associated with network latency within distributed virtual environments. It begins by discussing the advantages and disadvantages of synchronous and asynchronous distributed models, in the areas of user and object representation and user-to-user interaction. By introducing a hybrid solution, which utilises the concept of a causal surface, the advantages of both synchronous and asynchronous models are combined. Object distortion is a characteristic feature of the hybrid system, and this is proposed as a solution which facilitates dynamic real-time user collaboration. The final section covers implementation details, with reference to a prototype system available from the Internet.
Resumo:
A rapid-distortion model is developed to investigate the interaction of weak turbulence with a monochromatic irrotational surface water wave. The model is applicable when the orbital velocity of the wave is larger than the turbulence intensity, and when the slope of the wave is sufficiently high that the straining of the turbulence by the wave dominates over the straining of the turbulence by itself. The turbulence suffers two distortions. Firstly, vorticity in the turbulence is modulated by the wave orbital motions, which leads to the streamwise Reynolds stress attaining maxima at the wave crests and minima at the wave troughs; the Reynolds stress normal to the free surface develops minima at the wave crests and maxima at the troughs. Secondly, over several wave cycles the Stokes drift associated with the wave tilts vertical vorticity into the horizontal direction, subsequently stretching it into elongated streamwise vortices, which come to dominate the flow. These results are shown to be strikingly different from turbulence distorted by a mean shear flow, when `streaky structures' of high and low streamwise velocity fluctuations develop. It is shown that, in the case of distortion by a mean shear flow, the tendency for the mean shear to produce streamwise vortices by distortion of the turbulent vorticity is largely cancelled by a distortion of the mean vorticity by the turbulent fluctuations. This latter process is absent in distortion by Stokes drift, since there is then no mean vorticity. The components of the Reynolds stress and the integral length scales computed from turbulence distorted by Stokes drift show the same behaviour as in the simulations of Langmuir turbulence reported by McWilliams, Sullivan & Moeng (1997). Hence we suggest that turbulent vorticity in the upper ocean, such as produced by breaking waves, may help to provide the initial seeds for Langmuir circulations, thereby complementing the shear-flow instability mechanism developed by Craik & Leibovich (1976). The tilting of the vertical vorticity into the horizontal by the Stokes drift tends also to produce a shear stress that does work against the mean straining associated with the wave orbital motions. The turbulent kinetic energy then increases at the expense of energy in the wave. Hence the wave decays. An expression for the wave attenuation rate is obtained by scaling the equation for the wave energy, and is found to be broadly consistent with available laboratory data.
Resumo:
Above a critical chain length, where oligomers contain five or more recognition units, apparently infinite donor–acceptor polypseudorotaxanes are formed in the solid state. X-ray crystallographic analyses of three different examples have shown that although the oligomeric chains are undoubtedly discrete and monodisperse, they nevertheless appear to be infinite in the crystal.
Resumo:
In our seminal work, we reported how the biomaterial Parylene-C has the unique ability to coerce neurons and glial cells to migrate to and then grow in straight lines along serum coated rectangular parylene-C structures mounted on an oxidised silicon substrate. In this brief communication, we report how astrocyte cell bodies, from the dissociated postnatal rat hippocampus, can now to be successfully localised on an ultra-thin 13nm layer of parylene-C mounted on oxidised silicon (Figure 1). What is extremely interesting about this finding is that the astrocyte processes extended mainly in horizontal and vertical directions from the cell body thus creating a regular lattice network of individual cells. In addition, they comfortably extended a 50μm gap (equivalent to ~ 10 cell body diameters) to connect to adjacent astrocytes on neighbouring Parylene-C structures. This was found to occur repeatedly on circular geometries of 20μm diameter. In comparison to our previous work [1], we have decreased the thickness of the parylene-C structures by a factor of 10, to allow such technology to be able to be utilised for passive electrode design that requires extremely thin structures such as these. Thus, being able to culture astrocytes in regular lattice networks will pave the way for precise monitoring and stimulation of such ensembles via multi-electrode arrays, allowing a closer insight into their dynamic behaviour and their network properties.
Resumo:
We consider a scattering problem for a nonlinear disordered lattice layer governed by the discrete nonlinear Schrodinger equation. The linear state with exponentially small transparency, due to the Anderson localization, is followed for an increasing nonlinearity, until it is destroyed via a bifurcation. The critical nonlinearity is shown to decay with the lattice length as a power law. We demonstrate that in the chaotic regimes beyond the bifurcation the field is delocalized and this leads to a drastic increase of transparency. Copyright (C) EPLA, 2008
Resumo:
We study the orientational ordering on the surface of a sphere using Monte Carlo and Brownian dynamics simulations of rods interacting with an anisotropic potential. We restrict the orientations to the local tangent plane of the spherical surface and fix the position of each rod to be at a discrete point on the spherical surface. On the surface of a sphere, orientational ordering cannot be perfectly nematic due to the inevitable presence of defects. We find that the ground state of four +1/2 point defects is stable across a broad range of temperatures. We investigate the transition from disordered to ordered phase by decreasing the temperature and find a very smooth transition. We use fluctuations of the local directors to estimate the Frank elastic constant on the surface of a sphere and compare it to the planar case. We observe subdiffusive behavior in the mean square displacement of the defect cores and estimate their diffusion constants.
Resumo:
A lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels is presented by introducing a boundary condition for elastic and moving boundaries. The mass conservation for the boundary condition is tested in detail. The viscous flow in elastic vessels is simulated with a pressure-radius relationship similar to that of the Pulmonary blood vessels. The numerical results for steady flow agree with the analytical prediction to very high accuracy, and the simulation results for pulsatile flow are comparable with those of the aortic flows observed experimentally. The model is expected to find many applications for studying blood flows in large distensible arteries, especially in those suffering from atherosclerosis. stenosis. aneurysm, etc.
Resumo:
The multicomponent nonideal gas lattice Boltzmann model by Shan and Chen (S-C) is used to study the immiscible displacement in a sinusoidal tube. The movement of interface and the contact point (contact line in three-dimension) is studied. Due to the roughness of the boundary, the contact point shows "stick-slip" mechanics. The "stick-slip" effect decreases as the speed of the interface increases. For fluids that are nonwetting, the interface is almost perpendicular to the boundaries at most time, although its shapes at different position of the tube are rather different. When the tube becomes narrow, the interface turns a complex curves rather than remains simple menisci. The velocity is found to vary considerably between the neighbor nodes close to the contact point, consistent with the experimental observation that the velocity is multi-values on the contact line. Finally, the effect of three boundary conditions is discussed. The average speed is found different for different boundary conditions. The simple bounce-back rule makes the contact point move fastest. Both the simple bounce-back and the no-slip bounce-back rules are more sensitive to the roughness of the boundary in comparison with the half-way bounce-back rule. The simulation results suggest that the S-C model may be a promising tool in simulating the displacement behaviour of two immiscible fluids in complex geometry.
Resumo:
The lattice dynamics method is used to study the stability of the chain structures formed in electrorheological (ER) fluids. The appearance of the soft modes in the phonon dispersion of the structures indicates that the chains tend to distort and aggregate into thicker columns due to the electrostatic attractive forces and thermal generated forces between them. The results show that the stability of the chains relies on their width and the separation between them. The complete chain structures are more stable than the chains with defects. The results can be used to elucidate the densification phenomenon of the chains in the structuring process of ER fluids in the quiescent state.
Resumo:
A lattice Boltzmann model able to simulate viscous fluid systems with elastic and movable boundaries is proposed. By introducing the virtual distribution function at the boundary, the Galilean invariance is recovered for the full system. As examples of application, the how in elastic vessels is simulated with the pressure-radius relationship similar to that of the pulmonary blood vessels. The numerical results for steady how are in good agreement with the analytical prediction, while the simulation results for pulsative how agree with the experimental observation of the aortic flows qualitatively. The approach has potential application in the study of the complex fluid systems such as the suspension system as well as the arterial blood flow.
Resumo:
A reply to the comment of S. Romano, Phys. Rev. E 2015 on our previous paper is provided.
Resumo:
Synchronization and chaos play important roles in neural activities and have been applied in oscillatory correlation modeling for scene and data analysis. Although it is an extensively studied topic, there are still few results regarding synchrony in locally coupled systems. In this paper we give a rigorous proof to show that large numbers of coupled chaotic oscillators with parameter mismatch in a 2D lattice can be synchronized by providing a sufficiently large coupling strength. We demonstrate how the obtained result can be applied to construct an oscillatory network for scene segmentation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We study a symplectic chain with a non-local form of coupling by means of a standard map lattice where the interaction strength decreases with the lattice distance as a power-law, in Such a way that one can pass continuously from a local (nearest-neighbor) to a global (mean-field) type of coupling. We investigate the formation of map clusters, or spatially coherent structures generated by the system dynamics. Such clusters are found to be related to stickiness of chaotic phase-space trajectories near periodic island remnants, and also to the behavior of the diffusion coefficient. An approximate two-dimensional map is derived to explain some of the features of this connection. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We study strongly attractive fermions in an optical lattice superimposed by a trapping potential. We calculate the densities of fermions and condensed bound molecules at zero temperature. There is a competition between dissociated fermions and molecules leading to a reduction of the density of fermions at the trap center. (C) 2010 Elsevier B.V. All rights reserved.