833 resultados para KNEE OSTEOARTHRITIS
Resumo:
In rats immunized systemically with tetanus toxoid the concentration of specific anti-tetanus-toxoid-specific IgG in fluid from the rete testis and cauda epididymidis were respectively 0.6% and 1.4% the concentration in blood serum. The extratesticular duct system reabsorbed 97% of the IgG and 99% of the fluid leaving the rete, but estradiol administration affected the site of reabsorption. In untreated rats, the ductuli efferentes reabsorbed 94% of the IgG and 96% of the fluid leaving the rete, whereas estradiol-treated rats reabsorbed 83% of the IgG and 86% of the fluid, and the ductus epididymidis fully compensated for these different effects of estradiol on the ductuli efferentes. The concentrations of IgG in secretions of the seminal vesicles and prostate gland were lower (0.1% and 0.3% respectively of the titers in blood serum) than in fluids from the extratesticular ducts, and were not affected by the administration of estradiol. RT-PCR showed that Fcgrt (neonatal Fc receptor, also known as FcRn) is expressed in the reproductive ducts, where IgG is probably transported across epithelium, being particularly strong in the ductuli efferentes (where most IgG was reabsorbed) and distal caput epididymidis. It is concluded that IgG enters the rete testis and is concentrated only 2.5-fold along the extratesticular duct system, unlike spermatozoa, which are concentrated 95-fold. Further, the ductus epididymidis can recognize and compensate for changes in function of the ductuli efferentes.
Resumo:
Australian efforts to provide orthopaedic surgeons with living, load-bearing scaffolds suitable for current joint (knee and hip) replacement surgery, non-union fracture repair, and miniscal and growth plate cartilage regeneration are being lead by teams at the Institute for Medical and Veterinary Science and Women's and Children's Hospital in Adelaide; the Peter MacCallum and St Vincent's Medical Research Institutes in Melbourne; and the Mater Medical Research Institute and new Institute for Health and Biomedical Innovation at QUT, Brisbane. In each case multidisciplinary teams are attempting to develop autologous living tissue constructs, utilising mesenchymal stem cells (MSC), with the intention of effecting seamless repair and regeneration of skeletal trauma and defects. In this article we will briefly review current knowledge of the phenotypic properties of MSC and discuss the potential therapeutic applications of these cells as exemplified by their use in cartilage repair and tissue engineering based approaches to the treatment of skeletal defects.
Resumo:
This paper presents a new insight into the mechanism of biolubrication of articulating mammalian joints that includes the function of surface-active phospholipids (SAPLs). SAPLs can be adsorbed on surface of cartilage membranes as a hydrophobic monolayer (H-phobic-M Madel or Hills' Model) or as a newly proposed hydrophilic bilayer (H-philic-B Model). With respect to the synovial joint's frictionless work, three processes are identified namely: monolayer/bilayer phospholipids binding to cartilage with lubricin interaction; influence of induced-pressure on interaction of hyaluronan with phospholipids; and biolubrication arising from two gliding articular hydrophilic surfaces acting as reverse micelle. Lubricin is considered to play critical role as a supplier of phospholipids, which overlay the articular surface of articular cartilage. Hyaluronic acid is considered to play a critical mediating role in the interaction between the hydrophilic part of phospholipids, the articular surface and water (hydration) in facilitating the lubrication process. Tivo models of frictionless lubrication processes, namely hydrophobic (H-phobic-M Model) and our conceptual hydrophilic (H-philic-B Model), are compared. © Institution of Engineers Australia, 2008.
Resumo:
Gait recognition approaches continue to struggle with challenges including view-invariance, low-resolution data, robustness to unconstrained environments, and fluctuating gait patterns due to subjects carrying goods or wearing different clothes. Although computationally expensive, model based techniques offer promise over appearance based techniques for these challenges as they gather gait features and interpret gait dynamics in skeleton form. In this paper, we propose a fast 3D ellipsoidal-based gait recognition algorithm using a 3D voxel model derived from multi-view silhouette images. This approach directly solves the limitations of view dependency and self-occlusion in existing ellipse fitting model-based approaches. Voxel models are segmented into four components (left and right legs, above and below the knee), and ellipsoids are fitted to each region using eigenvalue decomposition. Features derived from the ellipsoid parameters are modeled using a Fourier representation to retain the temporal dynamic pattern for classification. We demonstrate the proposed approach using the CMU MoBo database and show that an improvement of 15-20% can be achieved over a 2D ellipse fitting baseline.
Resumo:
The repair of articular cartilage typically involves the repair of cartilage-subchondral bone tissue defects. Although various bioactive materials have been used to repair bone defects, how these bioactive materials in subchondral bone defects influence the repair of autologous cartilage transplant remains unclear. The aim of this study was to investigate the effects of different subchondral biomaterial scaffolds on the repair of autologous cartilage transplant in a sheep model. Cylindrical cartilage-subchondral bone defects were created in the right femoral knee joint of each sheep. The subchondral bone defects were implanted with hydroxyapatite-β-tricalcium phosphate (HA-TCP), poly lactic-glycolic acid (PLGA)-HA-TCP dual-layered composite scaffolds (PLGA/HA-TCP scaffolds), or autologous bone chips. The autologous cartilage layer was placed on top of the subchondral materials. After three months, the effect of different subchondral scaffolds on the repair of autologous cartilage transplant was systematically studied by investigating the mechanical strength, structural integration and histological responses. The results showed that the transplanted cartilage layer supported by HA-TCP scaffolds had better structural integration and higher mechanical strength than that supported by PLGA/HA-TCP scaffolds. Furthermore, HA-TCP supported cartilage showed higher expression of acid mucosubstances and glycol-amino-glycan (GAG) contents than that supported by PLGA/HA-TCP scaffolds. Our results suggested that the physicochemical properties, including the inherent mechanical strength and material chemistry of the scaffolds, play important roles in influencing the repair of autologous cartilage transplants. The study may provide useful information for the design and selection of proper subchondral biomaterials to support the repair of both subchondral bone and cartilage defects.
Resumo:
Eccentric exercise is the conservative treatment of choice for mid-portion Achilles tendinopathy. While there is a growing body of evidence supporting the medium to long term efficacy of eccentric exercise in Achilles tendinopathy treatment, very few studies have investigated the short term response of the tendon to eccentric exercise. Moreover, the mechanisms through which tendinopathy symptom resolution occurs remain to be established. The primary purpose of this thesis was to investigate the acute adaptations of the Achilles tendon to, and the biomechanical characteristics of, the eccentric exercise protocol used for Achilles tendinopathy rehabilitation and a concentric equivalent. The research was conducted with an orientation towards exploring potential mechanisms through which eccentric exercise may bring about a resolution of tendinopathy symptoms. Specifically, the morphology of tendinopathic and normal Achilles tendons was monitored using high resolution sonography prior to and following eccentric and concentric exercise, to facilitate comparison between the treatment of choice and a similar alternative. To date, the only proposed mechanism through which eccentric exercise is thought to result in symptom resolution is the increased variability in motor output force observed during eccentric exercise. This thesis expanded upon prior work by investigating the variability in motor output force recorded during eccentric and concentric exercises, when performed at two different knee joint angles, by limbs with and without symptomatic tendinopathy. The methodological phase of the research focused on establishing the reliability of measures of tendon thickness, tendon echogenicity, electromyography (EMG) of the Triceps Surae and the standard deviation (SD) and power spectral density (PSD) of the vertical ground reaction force (VGRF). These analyses facilitated comparison between the error in the measurements and experimental differences identified as statistically significant, so that the importance and meaning of the experimental differences could be established. One potential limitation of monitoring the morphological response of the Achilles tendon to exercise loading is that the Achilles tendon is continually exposed to additional loading as participants complete the walking required to carry out their necessary daily tasks. The specific purpose of the last experiment in the methodological phase was to evaluate the effect of incidental walking activity on Achilles tendon morphology. The results of this study indicated that walking activity could decrease Achilles tendon thickness (negative diametral strain) and that the decrease in thickness was dependent on both the amount of walking completed and the proximity of walking activity to the sonographic examination. Thus, incidental walking activity was identified as a potentially confounding factor for future experiments which endeavoured to monitor changes in tendon thickness with exercise loading. In the experimental phase of this thesis the thickness of Achilles tendons was monitored prior to and following isolated eccentric and concentric exercise. The initial pilot study demonstrated that eccentric exercise resulted in a greater acute decrease in Achilles tendon thickness (greater diametral strain) compared to an equivalent concentric exercise, in participants with no history of Achilles tendon pain. This experiment was then expanded to incorporate participants with unilateral Achilles tendinopathy. The major finding of this experiment was that the acute decrease in Achilles tendon thickness observed following eccentric exercise was modified by the presence of tendinopathy, with a smaller decrease (less diametral strain) noted for tendinopathic compared to healthy control tendon. Based on in vitro evidence a decrease in tendon thickness is believed to reflect extrusion of fluid from the tendon with loading. This process would appear to be limited by the presence of pathology and is hypothesised to be a result of the changes in tendon structure associated with tendinopathy. Load induced fluid movement may be important to the maintenance of tendon homeostasis and structure as it has the potential to enhance molecular movement and stimulate tendon remodelling. On this basis eccentric exercise may be more beneficial to the tendon than concentric exercise. Finally, EMG and motor output force variability (SD and PSD of VGRF) were investigated while participants with and without tendinopathy performed the eccentric and concentric exercises. Although between condition differences were identified as statistically significant for a number of force variability parameters, the differences were not greater than the limits of agreement for repeated measures. Consequently the meaning and importance of these findings were questioned. Interestingly, the EMG amplitude of all three Triceps Surae muscles did not vary with knee joint angle during the performance of eccentric exercise. This raises questions pertaining to the functional importance of performing the eccentric exercise protocol at each of the two knee joint angles as it is currently prescribed. EMG amplitude was significantly greater during concentric compared to eccentric muscle actions. Differences in the muscle activation patterns may result in different stress distributions within the tendon and be related to the different diametral strain responses observed for eccentric and concentric muscle actions.
Resumo:
Objective To determine the test-retest reliability of measurements of thickness, fascicle length (Lf) and pennation angle (θ) of the vastus lateralis (VL) and gastrocnemius medialis (GM) muscles in older adults. Participants Twenty-one healthy older adults (11 men and ten women; average age 68·1 ± 5·2 years) participated in this study. Methods Ultrasound images (probe frequency 10 MHz) of the VL at two sites (VL site 1 and 2) were obtained with participants seated with knee at 90º flexion. For GM measures, participants lay prone with ankle fixed at 15º dorsiflexion. Measures were taken on two separate occasions, 7 days apart (T1 and T2). Results The ICCs (95% CI) were: VL site 1 thickness = 0·96(0·90–0·98); VL site 2 thickness = 0·96(0·90–0·98), VL θ = 0·87(0·68–0·95), VL Lf = 0·80(0·50–0·92), GM thickness = 0·97(0·92–0·99), GM θ = 0·85(0·62–0·94) and GM Lf =0·90(0·75–0·96). The 95% ratio limits of agreement (LOAs) for all measures, calculated by multiplying the standard deviation of the ratio of the results between T1 and T2 by 1·96, ranged from 10·59 to 38·01%. Conclusion The ability of these tests to determine a real change in VL and GM muscle architecture is good on a group level but problematic on an individual level as the relatively large 95% ratio LOAs in the current study may encompass the changes in architecture observed in other training studies. Therefore, the current findings suggest that B-mode ultrasonography can be used with confidence by researchers when investigating changes in muscle architecture in groups of older adults, but its use is limited in showing changes in individuals over time.
Resumo:
Hamstring strain injuries (HSIs) are common in a number of sports and incidence rates have not declined in recent times. Additionally, the high rate of recurrent injuries suggests that our current understanding of HSI and re-injury risk is incomplete. Whilst the multifactoral nature of HSIs is agreed upon by many, often individual risk factors and/or causes of injury are examined in isolation. This review aims to bring together the causes, risk factors and interventions associated with HSIs to better understand why HSIs are so prevalent. Running is often identified as the primary activity type for HSIs and given the high eccentric forces and moderate muscle strain placed on the hamstrings during running these factors are considered to be part of the aetiology of HSIs. However, the exact causes of HSIs remain unknown and whilst eccentric contraction and muscle strain purportedly play a role, accumulated muscle damage and/or a single injurious event may also contribute. Potentially, all of these factors interact to varying degrees depending on the injurious activity type (i.e. running, kicking). Furthermore, anatomical factors, such as the biarticular organization, the dual innervations of biceps femoris (BF), fibre type distribution, muscle architecture and the degree of anterior pelvic tilt, have all been implicated. Each of these variables impact upon HSI risk via a number of different mechanisms that include increasing hamstring muscle strain and altering the susceptibility of the hamstrings to muscle damage. Reported risk factors for HSIs include age, previous injury, ethnicity, strength imbalances, flexibility and fatigue. Of these, little is known, definitively, about why previous injury increases the risk of future HSIs. Nevertheless, interventions put in place to reduce the incidence of HSIs by addressing modifiable risk factors have focused primarily on increasing eccentric strength, correcting strength imbalances and improving flexibility. The response to these intervention programmes has been mixed with varied levels of success reported. A conceptual framework is presented suggesting that neuromuscular inhibition following HSIs may impede the rehabilitation process and subsequently lead to maladaptation of hamstring muscle structure and function, including preferentially eccentric weakness, atrophy of the previously injured muscles and alterations in the angle of peak knee flexor torque. This remains an area for future research and practitioners need to remain aware of the multifactoral nature of HSIs if injury rates are to decline.
Resumo:
Bicycling at night is more dangerous than in the daytime and poor conspicuity is likely to be a contributing factor. The use of reflective markings on a pedestrian’s major joints to facilitate the perception of biological motion has been shown to greatly enhance pedestrian conspicuity at night, but few corresponding data exist for bicyclists. Twelve younger and twelve older participants drove around a closed-road circuit at night and indicated when they first saw a bicyclist who wore black clothing either alone, or together with a reflective bicycling vest, or a vest plus ankle and knee reflectors. The bicyclist pedaled in place on a bicycle that had either a static or flashing light, or no light on the handlebars. Bicyclist clothing significantly affected conspicuity; drivers responded to bicyclists wearing the vest plus ankle and knee reflectors at significantly longer distances than when the bicyclist wore the vest alone or black clothing without a vest. Older drivers responded to bicyclists less often and at shorter distances than younger drivers. The presence of a bicycle light, whether static or flashing, did not enhance the conspicuity of the bicyclist; this may result in bicyclists who use a bicycle light being overconfident of their own conspicuity at night. The implications of our findings are that ankle and knee markings are a simple and very effective approach for enhancing bicyclist conspicuity at night.
Resumo:
Hypertrophic scars arise when there is an overproduction of collagen during wound healing. These are often associated with poor regulation of the rate of programmed cell death(apoptosis) of the cells synthesizing the collagen or by an exuberant inflammatory response that prolongs collagen production and increases wound contraction. Severe contractures that occur, for example, after a deep burn can cause loss of function especially if the wound is over a joint such as the elbow or knee. Recently, we have developed a morphoelastic mathematical model for dermal repair that incorporates the chemical, cellular and mechanical aspects of dermal wound healing. Using this model, we examine pathological scarring in dermal repair by first assuming a smaller than usual apoptotic rate for myofibroblasts, and then considering a prolonged inflammatory response, in an attempt to determine a possible optimal intervention strategy to promote normal repair, or terminate the fibrotic scarring response. Our model predicts that in both cases it is best to apply the intervention strategy early in the wound healing response. Further, the earlier an intervention is made, the less aggressive the intervention required. Finally, if intervention is conducted at a late time during healing, a significant intervention is required; however, there is a threshold concentration of the drug or therapy applied, above which minimal further improvement to wound repair is obtained.
Resumo:
The 'dick' tog, a briefs-style male swimsuit as it is colloquially referred to, is linked to Australia's national identity with overtly masculine bronzed 'Aussie' bodies clothed in this iconic apparel. However, the reality is, our hunger for worshiping the sun and the addiction to a beach culture is tempered by the pragmatic need to cover up and wear neck-to-knee, or more apt, head-to-toe sun protective clothing. Australia, in particular the state of Queensland, has one of the highest rates of skin cancer in the world; nevertheless, even after wide-ranging public programs for sun safety awareness many people still continue to wear designs that provide minimal sun protection. This paper will examine issues surrounding fashion and sun safe clothing. It will be proposed that in order to have effective community adoption of sun safe practices it is critical to understand the important role that fashion plays in determining sun protective behaviour.
Resumo:
The great male Aussie cossie is growing spots. The ‘dick’ tog, as it is colloquially referred to, is linked to Australia’s national identify with overtly masculine bronzed Aussie bodies clothed in this iconic apparel. Yet the reality is our hunger for worshiping the sun and the addiction to a beach lifestyle is tempered by the pragmatic need for neck-to-knee, or more apt head-to-toe, swimwear. Spotty Dick is an irreverent play on male swimwear – it experiments with alternate modes to sheath the body with Lyrca in order to protect it from searing UV’s and at the same time light-heartedly fools around with texture and pattern; to be specific, black Scharovsky crystals, jewelled in spot patterns - jewelled clothing is not characteristically aligned to menswear and even less so to the great Aussie cossie. The crystals form a matrix of spots that attempt to provoke a sense of mischievousness aligned to the Aussie beach larrikin. Ironically, spot patterns are in itself a form of a parody, as prolonged sun exposure ages the skin and sun spots can occur if appropriate sun protection is not used. ‘Spotty Dick’ – a research experiment to test design suitability for the use of jewelled spot matrix patterns for UV aware men’s swimwear. The creative work was paraded at 56 shows, over a 2 week period, and an estimated 50,000 people viewed the work.
Resumo:
The objective quantification of three-dimensional kinematics during different functional and occupational tasks is now more in demand than ever. The introduction of new generation of low-cost passive motion capture systems from a number of manufacturers has made this technology accessible for teaching, clinical practice and in small/medium industry. Despite the attractive nature of these systems, their accuracy remains unproved in independent tests. We assessed static linear accuracy, dynamic linear accuracy and compared gait kinematics from a Vicon MX20 system to a Natural Point OptiTrack system. In all experiments data were sampled simultaneously. We identified both systems perform excellently in linear accuracy tests with absolute errors not exceeding 1%. In gait data there was again strong agreement between the two systems in sagittal and coronal plane kinematics. Transverse plane kinematics differed by up to 3 at the knee and hip, which we attributed to the impact of soft tissue artifact accelerations on the data. We suggest that low-cost systems are comparably accurate to their high-end competitors and offer a platform with accuracy acceptable in research for laboratories with a limited budget.
Resumo:
Finite Element Modeling (FEM) has become a vital tool in the automotive design and development processes. FEM of the human body is a technique capable of estimating parameters that are difficult to measure in experimental studies with the human body segments being modeled as complex and dynamic entities. Several studies have been dedicated to attain close-to-real FEMs of the human body (Pankoke and Siefert 2007; Amann, Huschenbeth et al. 2009; ESI 2010). The aim of this paper is to identify and appraise the state of-the art models of the human body which incorporate detailed pelvis and/or lower extremity models. Six databases and search engines were used to obtain literature, and the search was limited to studies published in English since 2000. The initial search results identified 636 pelvis-related papers, 834 buttocks-related papers, 505 thigh-related papers, 927 femur-related papers, 2039 knee-related papers, 655 shank-related papers, 292 tibia-related papers, 110 fibula-related papers, 644 ankle related papers, and 5660 foot-related papers. A refined search returned 100 pelvis-related papers, 45 buttocks related papers, 65 thigh-related papers, 162 femur-related papers, 195 kneerelated papers, 37 shank-related papers, 80 tibia-related papers, 30 fibula-related papers and 102 ankle-related papers and 246 foot-related papers. The refined literature list was further restricted by appraisal against a modified LOW appraisal criteria. Studies with unclear methodologies, with a focus on populations with pathology or with sport related dynamic motion modeling were excluded. The final literature list included fifteen models and each was assessed against the percentile the model represents, the gender the model was based on, the human body segment/segments included in the model, the sample size used to develop the model, the source of geometric/anthropometric values used to develop the model, the posture the model represents and the finite element solver used for the model. The results of this literature review provide indication of bias in the available models towards 50th percentile male modeling with a notable concentration on the pelvis, femur and buttocks segments.