974 resultados para Isotope-dilution
Resumo:
Reconstructing past water availability, both as rainfall and irrigation, is important to answer questions about the way society reacts to climate and its changes and the role of irrigation in the development of social complexity. Carbon stable isotope analysis of archaeobotanical remains is a potentially valuable method for reconstructing water availability. To further define the relationship between water availability and plant carbon isotope composition and to set up baseline values for the Southern Levant, grains of experimentally grown barley and sorghum were studied. The cereal crops were grown at three stations under five different irrigation regimes in Jordan. Results indicate that a positive but weak relationship exists between irrigation regime and total water input of barley grains, but no relationship was found for sorghum. The relationship for barley is site-specific and inter-annual variation was present at Deir ‘Alla, but not at Ramtha and Khirbet as-Samra.
Resumo:
At Hollow Banks Quarry, Scorton, located just north of Catterick (N Yorks.), a highly unusual group of 15 late Roman burials was excavated between 1998 and 2000. The small cemetery consists of almost exclusively male burials, dated to the fourth century. An unusually large proportion of these individuals was buried with crossbow brooches and belt fittings, suggesting that they may have been serving in the late Roman army or administration and may have come to Scorton from the Continent. Multi-isotope analyses (carbon, nitrogen, oxygen and strontium) of nine sufficiently well-preserved individuals indicate that seven males, all equipped with crossbow brooches and/or belt fittings, were not local to the Catterick area and that at least six of them probably came from the European mainland. Dietary (carbon and nitrogen isotope) analysis only of a tenth individual also suggests a non-local origin. At Scorton it appears that the presence of crossbow brooches and belts in the grave was more important for suggesting non-British origins than whether or not they were worn. This paper argues that cultural and social factors played a crucial part in the creation of funerary identities and highlights the need for both multi-proxy analyses and the careful contextual study of artefacts.
Resumo:
A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us simultaneously to measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the online water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δ D robustness. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water, resulting in an artificial water background with well-known δ D and δ18O values. The speleothem sample is placed in a copper tube, attached to the line, and after system stabilisation it is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements, a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain &delta D; and δ18O isotopic compositions of measured water aliquots. Precision is better than 1.5 ‰ for δ D and 0.4 ‰ for δ18O for water measurements for an extended range (−210 to 0 ‰ for δ D and −27 to 0 ‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to the isotope ratio mass spectrometry (IRMS) technique.
Resumo:
Carbon and nitrogen stable isotope ratios of 45 human and 23 faunal bone collagen samples were measured to study human diet and the management of domestic herbivores in past Jordan, contrasting skeletal remains from the Middle and Late Bronze Age and the Late Roman and Byzantine periods from the site of Ya'amūn near Irbid. The isotope data demonstrate that the management of the sheep and goats changed over time, with the earlier animals consuming more plants from semi-arid habitats, possibly because of transhumant herding strategies. The isotope data for fish presented here are the first from archaeological contexts from the Southern Levant. Although fish of diverse provenance was available at the site, human diet was predominately based on terrestrial resources and there was little dietary variability within each time-period. Isotopic variation between humans from different time-periods can mostly be explained by ‘baseline shifts’ in the available food sources; however, it is suggested that legumes may have played a more significant role in Middle and Late Bronze Age diet than later on.
Resumo:
Microbial degradation is a major determinant of the fate of pollutants in the environment. para-Nitrophenol (PNP) is an EPA listed priority pollutant with a wide environmental distribution, but little is known about the microorganisms that degrade it in the environment. We studied the diversity of active PNP-degrading bacterial populations in river water using a novel functional marker approach coupled with [13C6]PNP stable isotope probing (SIP). Culturing together with culture-independent terminal restriction fragment length polymorphism analysis of 16S rRNA gene amplicons identified Pseudomonas syringae to be the major driver of PNP degradation in river water microcosms. This was confirmed by SIP-pyrosequencing of amplified 16S rRNA. Similarly, functional gene analysis showed that degradation followed the Gram-negative bacterial pathway and involved pnpA from Pseudomonas spp. However, analysis of maleylacetate reductase (encoded by mar), an enzyme common to late stages of both Gram-negative and Gram-positive bacterial PNP degradation pathways, identified a diverse assemblage of bacteria associated with PNP degradation, suggesting that mar has limited use as a specific marker of PNP biodegradation. Both the pnpA and mar genes were detected in a PNP-degrading isolate, P. syringae AKHD2, which was isolated from river water. Our results suggest that PNP-degrading cultures of Pseudomonas spp. are representative of environmental PNP-degrading populations.
Resumo:
Deuterium (dD) and oxygen (d18O) isotopes are powerful tracers of the hydrological cycle and have been extensively used for paleoclimate reconstructions as they can provide information on past precipitation, temperature and atmospheric circulation. More recently, the use of 17Oexcess derived from precise measurement of d17O and d18O gives new and additional insights in tracing the hydrological cycle whereas uncertainties surround this proxy. However, 17Oexcess could provide additional information on the atmospheric conditions at the moisture source as well as about fractionations associated with transport and site processes. In this paper we trace water stable isotopes (dD, d17O and d18O) along their path from precipitation to cave drip water and finally to speleothem fluid inclusions for Milandre cave in northwestern Switzerland. A two year-long daily resolved precipitation isotope record close to the cave site is compared to collected cave drip water (3 months average resolution) and fluid inclusions of modern and Holocene stalagmites. Amount weighted mean dD, d18O and d17O are �71.0‰, �9.9‰, �5.2‰ for precipitation, �60.3‰, �8.7‰, �4.6‰ for cave drip water and �61.3‰, �8.3‰, �4.7‰ for recent fluid inclusions respectively. Second order parameters have also been derived in precipitation and drip water and present similar values with 18 per meg for 17Oexcess whereas d-excess is 1.5‰ more negative in drip water. Furthermore, the atmospheric signal is shifted towards enriched values in the drip water and fluid inclusions (D of ~ þ 10‰ for dD). The isotopic composition of cave drip water exhibits a weak seasonal signal which is shifted by around 8e10 months (groundwater residence time) when compared to the precipitation. Moreover, we carried out the first d17O measurement in speleothem fluid inclusions, as well as the first comparison of the d17O behaviour from the meteoric water to the fluid inclusions entrapment in speleothems. This study on precipitation, drip water and fluid inclusions will be used as a speleothem proxy calibration for Milandre cave in order to reconstruct paleotemperatures and moisture source variations for Western Central Europe.
Resumo:
The snowball Earth hypothesis postulates that the planet was entirely covered by ice for millions of years in the Neoproterozoic era, in a self-enhanced glaciation caused by the high albedo of the ice-covered planet. In a hard-snowball picture, the subsequent rapid unfreezing resulted from an ultra-greenhouse event attributed to the buildup of volcanic carbon dioxide (CO(2)) during glaciation(1). High partial pressures of atmospheric CO(2) (p(CO2); from 20,000 to 90,000 p. p. m. v.) in the aftermath of the Marinoan glaciation (similar to 635 Myr ago) have been inferred from both boron and triple oxygen isotopes(2,3). These p(CO2) values are 50 to 225 times higher than present-day levels. Here, we re-evaluate these estimates using paired carbon isotopic data for carbonate layers that cap Neoproterozoic glacial deposits and are considered to record post-glacial sea level rise(1). The new data reported here for Brazilian cap carbonates, together with previous ones for time-equivalent units(4-8), provide p(CO2) estimates lower than 3,200 p. p. m. v.-and possibly as low as the current value of similar to 400 p. p. m. v. Our new constraint, and our reinterpretation of the boron and triple oxygen isotope data, provide a completely different picture of the late Neoproterozoic environment, with low atmospheric concentrations of carbon dioxide and oxygen that are inconsistent with a hard-snowball Earth.
Resumo:
The Corumba Group cropping out in the southern Paraguay Belt in Brazil is one of the most complete Ediacaran sedimentary archives of palaeogeographic climatic biogeochemical and biotic evolution in southwestern Gondwana The unit hosts a rich fossil record including acritarchs vendotaenids (Vendo taenia Eoholynia) soft-bodied metazoans (Corumbella) and skeletal fossils (Cloudina Titanotheca) The Tamengo Formation made up mainly of limestones and marls provides a rich bio- and chemostratigraphic record Several outcrops formerly assigned to the Cuiaba Group are here included in the Tamengo Formation on the basis of lithological and chemostratigraphical criteria High-resolution carbon isotopic analyses are reported for the Tamengo Formation showing (from base to top) (1) a positive delta(13)C excursion to +4 parts per thousand PDB above post-glacial negative values (2) a negative excursion to -3 5 parts per thousand associated with a marked regression and subsequent transgression (3) a positive excursion to +5 5 parts per thousand and (4) a plateau characterized by delta(13)C around +3 parts per thousand A U-Pb SHRIMP zircon age of an ash bed Interbedded in the upper part of the delta(13)C positive plateau yielded 543 +/- 3 Ma which is considered as the depositional age (Babinski et al 2008a) The positive plateau in the upper Tamengo Formation and the preceding positive excursion are ubiquitous features in several successions worldwide including the Nama Group (Namibia) the Dengying Formation (South China) and the Nafun and Ara groups (Oman) This plateau is constrained between 542 and 551 Ma thus consistent with the age of the upper Tamengo Formation The negative excursion of the lower Tamengo Formation may be correlated to the Shuram-Wonoka negative anomaly although delta(13)C values do not fall beyond -3 5 parts per thousand in the Brazilian sections Sedimentary breccias occur just beneath this negative excursion in the lower Tamengo Formation One possible interpretation of the origin of these breccias is a glacioeustatic sea-level fall but a tectonic interpretation cannot be completely ruled out Published by Elsevier B V
Resumo:
The lavas produced by the Timanfaya eruption of 1730-1736 (Lanzarote, Canary Islands) contain a great many sedimentary and metamorphic (metasedimentary), and mafic and ultramafic plutonic xenoliths. Among the metamorphosed carbonate rocks (calc-silicate rocks [CSRs]) are monomineral rocks with forsterite or wollastonite, as well as rocks containing olivine +/- orthopyroxene +/- clinopyroxene +/- plagioclase: their mineralogical compositions are identical to those of the mafic (gabbros) and ultramafic (dunite, wherlite and lherzolite) xenoliths. The (87)Sr/(16)Sr (around 0.703) and (143)Nd/(144)Nd (around 0.512) isotope ratios of the ultramafic and metasedimentary xenoliths are similar, while the (147)Sm/(144)Nd ratios show crustal values (0.13-0.16) in the ultramafic xenoliths and mantle values (0.18-0.25) in some CSRs. The apparent isotopic anomaly of the metamorphic xenoliths can be explained in terms of the heat source (basaltic intrusion) inducing strong isotopic exchange ((87)Sr/(86)Sr and (143)Nd/(144)Nd) between metasedimentary and basaltic rocks. Petrofabric analysis also showed a possible relationship between the ultramafic and metamorphic xenoliths. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Important concentrations of tourmaline occur as gold-bearing stratiform tourmalinites and in mineralized quartz-tourmaline veins at the Tapera Grande and Quartzito gold prospects in the Mesoproterozoic Serra do Itaberaba Group, central Ribeira Belt (Sao Paulo State, SE Brazil). The main rock types in both prospects constitute the volcanic-sedimentary Morro da Pedra Preta Formation, which formed in a submarine back-arc setting. At Tapera Grande, the volcanic-sedimentary sequence is composed of metabasic and metavolcaniclastic rocks, graphitic and sulfur-rich metapelites, banded iron formation, metandesite, metarhyolite, calcsilicates, tourmalinites and metahydrothermalites derived from mafic and felsic rocks. The Mesoproterozoic rocks at Quartzito prospect are lithologically similar but they have been affected by Neoproterozoic faulting and shearing and by the emplacement of granitic rocks, resulting in the formation of tourmaline-rich quartz-carbonate veins with gold and base metal mineralization. We conducted a chemical and B-isotope study of tourmalines in order to better understand the origin of the stratiform tourmalinites in the Morro da Pedra Preta Formation and their relationship with gold mineralization. The overall range of delta(11)B values obtained for the tourmalinite and vein tourmalines is between - 15%. and -5 parts per thousand, with the tourmalinites failing at the low end of this range (-15 to -8 parts per thousand). Such values are typical for continental crust and inconsistent with a primary marine boron signature as expected from the submarine-exhalative model for the gold prospects. We conclude from this that tourmaline formed or recrystallized from crustal fluids related to the amphibolite-grade metamorphism which affected the Serra do Itaberaba Group and that gold deposition occurred syn- to post-peak metamorphism by phase immiscibility, as attested by fluid inclusions in Tapera Grande tourmalinite tourmaline and quartz. The vein-hosted tourmalines at Quartzito have isotopically variable boron signatures, with heavier delta(11)B values of -5 parts per thousand to -8 parts per thousand for acicular green tourmalines and lighter values (-15 parts per thousand to -7 parts per thousand for light blue, Ti-firee tourmaline from quartz-carbonate veins). We attribute the heavier boron to fluids derived from the volcano-sedimentary rocks of marine affinity whereas the lighter boron was contributed by crustal fluids related to the granitoids or metasediments in the continental crust. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
We developed an analytical method and constrained procedural boundary conditions that enable accurate and precise Zn isotope ratio measurements in urban aerosols. We also demonstrate the potential of this new isotope system for air pollutant source tracing. The procedural blank is around 5 ng and significantly lower than published methods due to a tailored ion chromatographic separation. Accurate mass bias correction using external correction with Cu is limited to Zn sample content of approximately 50 ng due to the combined effect of blank contribution of Cu and Zn from the ion exchange procedure and the need to maintain a Cu/Zn ratio of approximately 1. Mass bias is corrected for by applying the common analyte internal standardization method approach. Comparison with other mass bias correction methods demonstrates the accuracy of the method. The average precision of delta(66)Zn determinations in aerosols is around 0.05% per atomic mass unit. The method was tested on aerosols collected in Sin Paulo City, Brazil. The measurements reveal significant variations in delta(66)Zn(Imperial) ranging between -0.96 and -0.37% in coarse and between -1.04 and 0.02% in fine particular matter. This variability suggests that Zn isotopic compositions distinguish atmospheric sources. The isotopic light signature suggests traffic as the main source. We present further delta(66)Zn(Imperial) data for the standard reference material NIST SRM 2783 (delta 66Z(Imperial) = 0.26 +/- 0.10%).
Resumo:
Neodymium and lead isotope values in sediment samples were used to interpret sediment transport and source rocks on the Southeastern South American upper margin. The sediments of the Argentinian margin exhibit an average epsilon(Nd) value of -1.9, indicating the influence of the Andean rocks as sediment sources. Sediments from the Rio de La Plata estuary show an average epsilon(Nd) value of -9.6 which is similar to that of the Southern Brazilian Upper Margin. Finally, sediments of Southeastern Brazil, which are associated with the transport of the Brazil Current exhibit an average epsilon(Nd) of -13.0. The Pb isotope signatures also confirm the differentiation of source rocks in the sedimentation of the study area. In addition, Pb isotopes helped to establish the extent of the influence of the Rio de La Plata on the sedimentation of the Southern Brazilian margin. In terms of Pb isotopes the sediments from the Rio de La Plata estuary and Southern Brazil are more radiogenic than those of Southeastem Brazil and the Argentinian margin. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We report on a study of the CH3OD molecule in a search for new far-infrared (FIR) laser lines. For optical pumping of large offset vibrational absorption transitions, a continuous-wave waveguide CO2 laser with 300 MHz tunability around each line was used for the first time. As a consequence, 17. new far-infrared laser emissions were observed. For these lines, we also present data on wavelength, intensity, offset, relative polarization, and optimum operation pressure.
Resumo:
Through the optical pump technique we have reinvestigated the CHD2OH molecule as a source of far-infrared (FIR) laser lines using for the first time a CO2 laser lasing on regular, hot, and sequence bands. As a consequence, we present here spectroscopic data of 16 now FIR laser transitions from this molecule. Furthermore, we also present a catalogue of all FIR laser lines generated from CHD2OH.