950 resultados para Islets encapsulation
Resumo:
The proposal presented in this thesis is to provide designers of knowledge based supervisory systems of dynamic systems with a framework to facilitate their tasks avoiding interface problems among tools, data flow and management. The approach is thought to be useful to both control and process engineers in assisting their tasks. The use of AI technologies to diagnose and perform control loops and, of course, assist process supervisory tasks such as fault detection and diagnose, are in the scope of this work. Special effort has been put in integration of tools for assisting expert supervisory systems design. With this aim the experience of Computer Aided Control Systems Design (CACSD) frameworks have been analysed and used to design a Computer Aided Supervisory Systems (CASSD) framework. In this sense, some basic facilities are required to be available in this proposed framework: ·
Resumo:
O ácido azelaico é um fármaco com actividade bacteriostática para muitos microorganismos sendo por isso frequentemente aplicado no tratamento do acne. Porém, às formulações tópicas deste fármaco estão geralmente associados alguns efeitos adversos e fracas adesões à terapêutica. Assim, a nanotecnologia pode ser aqui considerada como uma estratégia inovadora para ultrapassar os obstáculos anteriores. O objectivo deste estudo centrou-se no desenvolvimento e caracterização de nanopartículas de PLGA contendo o ácido azelaico. As nanopartículas foram produzidas através do método modificado de emulsificação/difusão do solvente e posteriormente incluídas num gel de Carbopol 940. Foram caracterizados vários parâmetros da formulação tais como potencial zeta, tamanho da partícula e eficiência de encapsulação. O tamanho médio das partículas foi de 378,63 nm (com I.P. cerca de 0,09) e o potencial zeta foi de -7,82 mV. Aeficiência de encapsulação do ácido azelaico foi de 76 ± 3,81%. Consequentemente, estas nanopartículas poderão ser consideradas ferramentas úteis para a veiculação do ácido azelaico.
Resumo:
A dermatite atópica é uma patologia cutânea crónica que requer cuidados intensivos da pele e tratamento farmacológico; contudo, os tratamentos disponíveis necessitam urgentemente de ser melhorados, especialmente quando utilizados por períodos longos ou em grupos específicos (ex: crianças). A nanotecnologia tem contribuído com sistemas de veiculação inovadores e pode oferecer terapias efectivas e direcionadas. Os objectivos deste estudo centraram-se na preparação caracterização das nanopartículas de policaprolactona carregadas com acetato de hidrocortisona em termos das propriedades físico-químicas, eficiência de encapsulação, ensaios de libertação in vitro e ensaios de segurança dos excipientes utilizados em voluntários humanos. As nanopartículas produzidas apresentaram um tamanho médio de 258,4 24,5 nm e um índice de polidispersão de 0,084. O potencial zeta foi -4,39 0,62 mV e a eficiência de encapsulação foi 36,32 0,03 %. A libertação in vitro do fármaco foi controlada ao longo do tempo. Além disso, os testes de segurança indicaram que os excipientes foram bem tolerados. Este estudo demonstra que as nanopartículas de policaprolactona são sistemas estáveis para veiculação de acetato de hidrocortisona que poderão conduzir a uma libertação prolongada do fármaco, com resultados promissores ao nível da sua segurança quando aplicados na pele humana.
Estudo do impacto do tamanho máximo da carga da trama Ethernet no perfil do Tráfego IPV6 na Internet
Resumo:
A transição entre a versão 4 para a versão 6 do Internet Protocol (IP) vem ocorrendo na comunidade da Internet. No entanto, a estrutura interna dos protocolos IPv4 e IPv6, em detalhe no tamanho dos seus cabeçalhos, pode provocar alterações no perfil tráfego da rede. Este trabalho estuda as mudanças nas características de tráfego de rede, avaliando o que mudaria se o tráfego gerado fosse apenas IPv6 em vez de IPv4. Este artigo estende-se uma pesquisa anterior, abordando novas questões, mas usando os registos de dados reais disponíveis publicamente. É adotada uma metodologia de engenharia reversa nos pacotes IPv4 capturados, permitindo assim inferir qual a carga original no computador tributário e em seguida reencapsular essa carga em novos pacotes usando restrições de encapsulamento IPv6. Conclui-se que, na transição de IPv4 para IPv6, haverá um aumento no número de pacotes transmitidos na Internet.
Resumo:
Worldwide marine protected areas (MPAs) have been designated to protect marine resources, including top predators such as seabirds. There is no conclusive information on whether protected areas can improve population trends of seabirds when these are further exploited as tourist attractions, an activity that has increased in past decades. Humboldt Penguins (Spheniscus humboldti) and Magellanic Penguins (S. magellanicus) breed sympatrically on Puñihuil Islets, two small coastal islands off the west coast of Chiloé Island (41° S) in southern Chile that are subject to exploitation for tourism. Our goal was to compare the population size of the mixed colony of Humboldt and Magellanic Penguins before and after protection from unregulated tourism and freely roaming goats in 1997. For this purpose, two censuses were conducted in 2004 and 2008, and the numbers compared with those obtained in 1997 by other authors. The proportion of occupied, unoccupied, and collapsed/flooded burrows changed between years; there were 68% and 34% fewer collapsed burrows in 2004 and 2008, respectively, than in 1997. For the total number of burrows of both species, we counted 48% and 63% more burrows in 2004 and 2008, respectively, than in 1997. We counted 13% more burrows of Humboldt Penguins in 2008 than in 1997, and for Magellanic Penguins, we estimated a 64% increase in burrows in 2008. Presumably, this was as a result of habitat improvement attributable to the exclusion of tourists and the removal of goats from the islets. Although tourist visits to the islets are prohibited, tourism activities around the colonies are prevalent and need to be taken into account to promote appropriate management.
Resumo:
The suitability of cryopreservation for the secure, long-term storage of the rare and endangered species Cosmos atrosanguineus was investigated. Using encapsulation/dehydration of shoot tips in alginate strips, survival rates of up to 100 % and shoot regeneration of up to 35 % were achieved. Light and electron microscopy studies indicated that cellular damage to some regions of the shoot tip during the freeze/thaw procedure was high, although cell survival in and around the meristematic region allowed shoot tip regeneration. The genetic fingerprinting technique, amplified fragment length polymorphisms (AFLPs), showed that no detectable genetic variation was present between material of C. atrosanguineus at the time of initiation into tissue culture and that which had been cryopreserved, stored in liquid nitrogen for 12 months and regenerated. Wearied plantlets that were grown under glasshouse conditions exhibited no morphological variation from non-frozen controls. (C) 2003 Annals of Botany Company.
Resumo:
The inability to conserve cocoa (Theobroma cacao L.) germplasm via sced storage and the vulnerability of field collections make the establishment of cryopreserved genebanks for the crop a priority. An effective encapsulation-dehydration based cryopreservation system has been developed for cocoa but because the somatic embryos used for freezing arise after a protracted period of callus culture there is concern about maintenance of genetic fidelity during the process. Microsatellite markers for seven of the 10 cocoa linkage groups were used to screen a population of 189 primary somatic embryo-derived emblings and the 43 secondary somatic embryos they gave rise to. Of the primary somatic embryos, 38.1% exhibited polymorphic microsatellite profiles while for secondary somatic embryos the frequency was 23.3%. The same microsatellite markers used to screen another population of 44 secondary somatic embryos cryopreserved through encapsulation-dehydration revealed no polymorphisms. Scanning electron microscopy showed the secondary somatic embryos were derived from cotyledonary epidermal cells rather than callus. The influence of embryo ontogeny on somaclonal variation is discussed.
Resumo:
The mechanisms that reduce the viability of plant somatic embryos following cryopreservation are not known. The objective of the present study was to evaluate the sensitivity of cocoa (Theobroma cacao L.) somatic embryos at different stages of an encapsulation-dehydration protocol using stress-related volatile hydrocarbons as markers of injury and recovery. The plant stress hormone ethylene and volatile hydrocarbons derived from hydroxyl radicals (methane) and lipid peroxidation (ethane) were determined using gas chromatography headspace analysis. Ethylene and methane were the only volatiles detected, with both being produced after each step of the cryogenic protocol. Ethylene production was significantly reduced following exposure to liquid nitrogen, but then increased in parallel with embryo recovery. In contrast, the production of methane was cyclic during recovery, with the first cycle occurring earlier for embryos recovered from liquid nitrogen and desiccation than those recovered from earlier steps in the protocol. These results suggest that loss of somatic embryo viability during cryopreservation may be related to the oxidative status of the tissue, and its capacity to produce ethylene. This study has demonstrated that headspace volatile analysis provides a robust non-destructive analytical approach for assessing the survival and recovery of plant somatic embryos following cryopreservation.
Resumo:
Question: What are the life-history costs for a predatory insect of surviving parasitoid attack, and can parasitoid attack alter predator-prey interactions? Hypotheses: Survivorship is influenced by host age. Hosts that suffer parasitoid attack grow more slowly and consume fewer prey. Those that survive attack are smaller as adults and show reduced survivorship. Organisms: The aphidophagous hoverfly Episyrphus balteatus, its endoparasitoid wasp Diplazon laetatorius and its prey, the pea aphid, Acyrthosiphon pisum. Site of experiments: All experiments were conducted in controlled temperature rooms and chambers in the laboratory. Methods: Episyrphus balteatus larvae of each instar were exposed to attack by Diplazon laetatorius, then dissected to measure the encapsulation response (a measure of immunity). Second instar larvae were either attacked or not attacked by D. laetatorius. Their development rates and numbers of prey consumed were noted. The size and survivorship of surviving (immune) and control hoverflies were compared following eclosion. Conclusions: Successful immune response increased with larval age (first instar 0%, second instar 40%, third instar 100% survival). Second instar larvae that successfully resisted parasitoid attack were larger as pupae (but not as adults) and showed reduced adult survivorship. Female adult survivors were more likely than male survivors to have died within 16 days of eclosion, but there was no difference between unattacked male and female control hoverflies. Attacked larvae, irrespective of immune status, consumed fewer aphids than unattacked individuals. Episyrphus balteatus suffers significant costs of resisting parasitoid attack, and parasitoid attack can reduce the top-down effects of an insect predator, irrespective of whether the host mounts an immune response or not.
Resumo:
Cryopreservation using encapsulation-dehydration was developed for the long-term conservation of cocoa (Theobroma cacao L.) germplasm. Survival of individually encapsulated somatic embryos after desiccation and cryopreservation was achieved through optimization of cryoprotectants (abscisic acid (ABA) and sugar), duration of osmotic and evaporative dehydration, and embryo development stage. Up to 63% of the genotype SPA4 early-cotyledonary somatic embryos survived cryopreservation following 7 days preculture with 1 M sucrose and 4 h silica exposure (16% moisture content in bead). This optimized protocol was successfully applied to three other genotypes, e.g. EET272, IMC14 and AMAZ12, with recovery frequencies of 25, 40 and 72%, respectively (but the latter two genotypes using 0.75 M sucrose). Recovered SPA4 somatic embryos converted to plants at a rate of 33% and the regenerated plants were phenotypically comparable to non-cryopreserved somatic embryo-derived plants.
Resumo:
The suitability of cryopreservation for the secure, long-term storage of the rare and endangered species Cosmos atrosanguineus was investigated. Using encapsulation/dehydration of shoot tips in alginate strips, survival rates of up to 100 % and shoot regeneration of up to 35 % were achieved. Light and electron microscopy studies indicated that cellular damage to some regions of the shoot tip during the freeze/thaw procedure was high, although cell survival in and around the meristematic region allowed shoot tip regeneration. The genetic fingerprinting technique, amplified fragment length polymorphisms (AFLPs), showed that no detectable genetic variation was present between material of C. atrosanguineus at the time of initiation into tissue culture and that which had been cryopreserved, stored in liquid nitrogen for 12 months and regenerated. Weaned plantlets that were grown under glasshouse conditions exhibited no morphological variation from non-frozen controls.
Resumo:
We report the use of transition-metal-exchanged zeolites as media for the catalytic formation and encapsulation of both polyethyne and polypropyne, and computer modeling studies on the composites so formed. Alkyne gas was absorbed into the pores of zeolite Y (Faujasite) exchanged with transition-metal cations [Fe(II), Co(II), Cu(II), Ni(II), and Zn(II)]. Ni(II) and Zn(II) were found to be the most efficient for the production of poly-ynes. These cations were also found to be effective in polymer generation when exchanged in zeolites mordenite and beta. The resulting powdered samples were characterized by FTIR, Raman, diffuse reflectance electronic spectroscopy, TEM, and elemental analysis, revealing, nearly complete loading of the zeolite channels for the majority of the samples. Based on the experimental carbon content, we have derived the percentage of channel filling, and the proportion of the channels containing a single polymer chain for mordenite. Experimentally, the channels for Y are close to complete filling for polyethyne (PE) and polypropyne (PP), and this is also true for polyethyne in mordenite. Computer modeling studies using Cerius2 show that the channels of mordenite can only accept a single polymer chain of PP, in which case these channels are also completely filled.
Resumo:
Recent work exploring the use of block copolymer vesicles and tubules is reviewed. The stability and toughness of block copolymer vesicles are enhanced compared to those formed by low molar mass amphiphiles. Functionality can also readily be introduced through the polymer chemistry or by incorporating additional components (for example pore-forming membrane proteins). This design flexibility leads to numerous potential applications in encapsulation, in targeted drug delivery, templating of inorganic materials and many others.
Resumo:
A linear trinuclear Ni-Schiff base complex [Ni-3(salpen)(2)(PhCH2COO)(2)(EtOH)] has been synthesized by combining Ni(ClO4)(2)center dot 6H(2)O, phenyl acetic acid (C6H5CH2COOH), and the Schiff base ligand, N,N'-bis(salicylidene)-1,3-pentanediamine (H(2)salpen). This complex is self-assembled through hydrogen bonding and C-H-g interaction in the solid state to generate a sheet-like architecture, while in organic solvent (CH2Cl2), it forms vesicles with a mean diameter of 290 nm and fused vesicles, depending upon the concentration of the solution. These vesicles act as an excellent carrier of dye molecules in CH2Cl2. The morphology of the complex has been determined by scanning electron microscopy and transmission electron microscopy experiments, and the encapsulation of dye has been examined by confocal microscopic image and electronic absorption spectra.
Resumo:
Templated sol-gel encapsulation of surfactant-stabilised micelles containing metal precursor(s) with ultra-thin porous silica coating allows solvent extraction of organic based stabiliser from the composites in colloidal state hence a new method of preparing supported alloy catalysts using the inorganic silica-stabilised nano-sized, homogenously mixed, silver - platinum (Ag-Pt) colloidal particles is reported.