952 resultados para Ion channel-like activity
Resumo:
Transporters for the biogenic amines dopamine, norepinephrine, epinephrine and serotonin are largely responsible for transmitter inactivation after release. They also serve as high-affinity targets for a number of clinically relevant psychoactive agents, including antidepressants, cocaine, and amphetamines. Despite their prominent role in neurotransmitter inactivation and drug responses, we lack a clear understanding of the permeation pathway or regulation mechanisms at the single transporter level. The resolution of radiotracer-based flux techniques limits the opportunities to dissect these problems. Here we combine patch-clamp recording techniques with microamperometry to record the transporter-mediated flux of norepinephrine across isolated membrane patches. These data reveal voltage-dependent norepinephrine flux that correlates temporally with antidepressant-sensitive transporter currents in the same patch. Furthermore, we resolve unitary flux events linked with bursts of transporter channel openings. These findings indicate that norepinephrine transporters are capable of transporting neurotransmitter across the membrane in discrete shots containing hundreds of molecules. Amperometry is used widely to study neurotransmitter distribution and kinetics in the nervous system and to detect transmitter release during vesicular exocytosis. Of interest regarding the present application is the use of amperometry on inside-out patches with synchronous recording of flux and current. Thus, our results further demonstrate a powerful method to assess transporter function and regulation.
Resumo:
Streaming potentials across cloned epithelial Na+ channels (ENaC) incorporated into planar lipid bilayers were measured. We found that the establishment of an osmotic pressure gradient (Δπ) across a channel-containing membrane mimicked the activation effects of a hydrostatic pressure differential (ΔP) on αβγ-rENaC, although with a quantitative difference in the magnitude of the driving forces. Moreover, the imposition of a Δπ negates channel activation by ΔP when the Δπ was directed against ΔP. A streaming potential of 2.0 ± 0.7 mV was measured across αβγ-rat ENaC (rENaC)-containing bilayers at 100 mM symmetrical [Na+] in the presence of a 2 Osmol/kg sucrose gradient. Assuming single file movement of ions and water within the conduction pathway, we conclude that between two and three water molecules are translocated together with a single Na+ ion. A minimal effective pore diameter of 3 Å that could accommodate two water molecules even in single file is in contrast with the 2-Å diameter predicted from the selectivity properties of αβγ-rENaC. The fact that activation of αβγ-rENaC by ΔP can be reproduced by the imposition of Δπ suggests that water movement through the channel is also an important determinant of channel activity.
Resumo:
The n-type K+ channel (n-K+, Kv1.3) in lymphocytes has been recently implicated in the regulation of Fas-induced programmed cell death. Here, we demonstrate that ceramide, a lipid metabolite synthesized upon Fas receptor ligation, inhibits n-K+ channel activity and induces a tyrosine phosphorylation of the Kv1.3 protein in Jurkat T lymphocytes. Tyrosine phosphorylation of the n-K+ channel correlated with an activation of the Src-like tyrosine kinase p56lck upon cellular treatment with the ceramide analog C6-ceramide. Because genetic deficiency of p56lck or inhibition of Src-like tyrosine kinases by herbimycin A prevented ceramide-mediated n-K+ channel inhibition and tyrosine phosphorylation, we propose a ceramide-initiated activation of p56lck resulting in tyrosine phosphorylation and inhibition of the n-K+ channel protein.
Resumo:
Three different cDNAs, Prh-19, Prh-26, and Prh-43 [3′-phosphoadenosine-5′-phosphosulfate (PAPS) reductase homolog], have been isolated by complementation of an Escherichia coli cysH mutant, defective in PAPS reductase activity, to prototrophy with an Arabidopsis thaliana cDNA library in the expression vector λYES. Sequence analysis of the cDNAs revealed continuous open reading frames encoding polypeptides of 465, 458, and 453 amino acids, with calculated molecular masses of 51.3, 50.5, and 50.4 kDa, respectively, that have strong homology with fungal, yeast, and bacterial PAPS reductases. However, unlike microbial PAPS reductases, each PRH protein has an N-terminal extension, characteristic of a plastid transit peptide, and a C-terminal extension that has amino acid and deduced three-dimensional homology to thioredoxin proteins. Adenosine 5′-phosphosulfate (APS) was shown to be a much more efficient substrate than PAPS when the activity of the PRH proteins was tested by their ability to convert 35S-labeled substrate to acid-volatile 35S-sulfite. We speculate that the thioredoxin-like domain is involved in catalytic function, and that the PRH proteins may function as novel “APS reductase” enzymes. Southern hybridization analysis showed the presence of a small multigene family in the Arabidopsis genome. RNA blot hybridization with gene-specific probes revealed for each gene the presence of a transcript of ≈1.85 kb in leaves, stems, and roots that increased on sulfate starvation. To our knowledge, this is the first report of the cloning and characterization of plant genes that encode proteins with APS reductase activity and supports the suggestion that APS can be utilized directly, without activation to PAPS, as an intermediary substrate in reductive sulfate assimilation.
Resumo:
Block of the channel of N-methyl-d-aspartate (NMDA) receptors by external Mg2+ (Mgo2+) has broad implications for the many physiological and pathological processes that depend on NMDA receptor activation. An essential property of channel block by Mgo2+ is its powerful voltage dependence. A widely cited explanation for the strength of the voltage dependence of block is that the Mgo2+-binding site is located deep in the channel of NMDA receptors; Mgo2+ then would sense most of the membrane potential field during block. However, recent electrophysiological and mutagenesis studies suggest that the blocking site cannot be deep enough to account for the voltage dependence of Mgo2+ block. Here we describe the basis for this discrepancy: the magnitude and voltage dependence of channel block by Mgo2+ are strongly regulated by external and internal permeant monovalent cations. Our data support a model in which access to the channel by Mgo2+ is prevented when permeant ion-binding sites at the external entrance to the channel are occupied. Mgo2+ can block the channel only when the permeant ion-binding sites are unoccupied and then can either unblock back to the external solution or permeate the channel. Unblock to the external solution is prevented if external permeant ions bind while Mg2+ blocks the channel, although permeation is still permitted. The model provides an explanation for the strength of the voltage dependence of Mgo2+ block and quantifies the interdependence of permanent and blocking ion binding to NMDA receptors.
Resumo:
Bcl-2 is the prototypical member of a large family of apoptosis-regulating proteins, consisting of blockers and promoters of cell death. The three-dimensional structure of a Bcl-2 homologue, Bcl-XL, suggests striking similarity to the pore-forming domains of diphtheria toxin and the bacterial colicins, prompting exploration of whether Bcl-2 is capable of forming pores in lipid membranes. Using chloride efflux from KCl-loaded unilamellar lipid vesicles as an assay, purified recombinant Bcl-2 protein exhibited pore-forming activity with properties similar to those of the bacterial toxins, diphtheria toxin, and colicins, i.e., dependence on low pH and acidic lipid membranes. In contrast, a mutant of Bcl-2 lacking the two core hydrophobic α-helices (helices 5 and 6), predicted to be required for membrane insertion and channel formation, produced only nonspecific effects. In planar lipid bilayers, where detection of single channels is possible, Bcl-2 formed discrete ion-conducting, cation-selective channels, whereas the Bcl-2 (Δh5, 6) mutant did not. The most frequent conductance observed (18 ± 2 pS in 0.5 M KCl at pH 7.4) is consistent with a four-helix bundle structure arising from Bcl-2 dimers. However, larger channel conductances (41 ± 2 pS and 90 ± 10 pS) also were detected with progressively lower occurrence, implying the step-wise formation of larger oligomers of Bcl-2 in membranes. These findings thus provide biophysical evidence that Bcl-2 forms channels in lipid membranes, suggesting a novel function for this antiapoptotic protein.
Resumo:
ATP-sensitive K+ (KATP) channels regulate many cellular functions by linking cell metabolism to membrane potential. We have generated KATP channel-deficient mice by genetic disruption of Kir6.2, which forms the K+ ion-selective pore of the channel. The homozygous mice (Kir6.2−/−) lack KATP channel activity. Although the resting membrane potential and basal intracellular calcium concentrations ([Ca2+]i) of pancreatic beta cells in Kir6.2−/− are significantly higher than those in control mice (Kir6.2+/+), neither glucose at high concentrations nor the sulfonylurea tolbutamide elicits a rise in [Ca2+]i, and no significant insulin secretion in response to either glucose or tolbutamide is found in Kir6.2−/−, as assessed by perifusion and batch incubation of pancreatic islets. Despite the defect in glucose-induced insulin secretion, Kir6.2−/− show only mild impairment in glucose tolerance. The glucose-lowering effect of insulin, as assessed by an insulin tolerance test, is increased significantly in Kir6.2−/−, which could protect Kir6.2−/− from developing hyperglycemia. Our data indicate that the KATP channel in pancreatic beta cells is a key regulator of both glucose- and sulfonylurea-induced insulin secretion and suggest also that the KATP channel in skeletal muscle might be involved in insulin action.
Resumo:
Large conductance voltage- and Ca2+-dependent K+ (MaxiK) channels show sequence similarities to voltage-gated ion channels. They have a homologous S1-S6 region, but are unique at the N and C termini. At the C terminus, MaxiK channels have four additional hydrophobic regions (S7-S10) of unknown topology. At the N terminus, we have recently proposed a new model where MaxiK channels have an additional transmembrane region (S0) that confers β subunit regulation. Using transient expression of epitope tagged MaxiK channels, in vitro translation, functional, and “in vivo” reconstitution assays, we now show that MaxiK channels have seven transmembrane segments (S0-S6) at the N terminus and a S1-S6 region that folds in a similar way as in voltage-gated ion channels. Further, our results indicate that hydrophobic segments S9-S10 in the C terminus are cytoplasmic and unequivocally demonstrate that S0 forms an additional transmembrane segment leading to an exoplasmic N terminus.
Resumo:
Limitation of water loss and control of gas exchange is accomplished in plant leaves via stomatal guard cells. Stomata open in response to light when an increase in guard cell turgor is triggered by ions and water influx across the plasma membrane. Recent evidence demonstrating the existence of ATP-binding cassette proteins in plants led us to analyze the effect of compounds known for their ability to modulate ATP-sensitive potassium channels (K-ATP) in animal cells. By using epidermal strip bioassays and whole-cell patch-clamp experiments with Vicia faba guard cell protoplasts, we describe a pharmacological profile that is specific for the outward K+ channel and very similar to the one described for ATP-sensitive potassium channels in mammalian cells. Tolbutamide and glibenclamide induced stomatal opening in bioassays and in patch-clamp experiments, a specific inhibition of the outward K+ channel by these compounds was observed. Conversely, application of potassium channel openers such as cromakalim or RP49356 triggered stomatal closure. An apparent competition between sulfonylureas and potassium channel openers occurred in bioassays, and outward potassium currents, previously inhibited by glibenclamide, were partially recovered after application of cromakalim. By using an expressed sequence tag clone from an Arabidopsis thaliana homologue of the sulfonylurea receptor, a 7-kb transcript was detected by Northern blot analysis in guard cells and other tissues. Beside the molecular evidence recently obtained for the expression of ATP-binding cassette protein transcripts in plants, these results give pharmacological support to the presence of a sulfonylurea-receptor-like protein in the guard-cell plasma membrane tightly involved in the outward potassium channel regulation during stomatal movements.
Resumo:
Excitotoxicity, resulting from sustained activation of glutamate receptors of the N-methyl-d-aspartate (NMDA) subtype, is considered to play a causative role in the etiology of ischemic stroke and several neurodegenerative diseases. The NMDA receptor is therefore a target for the development of neuroprotective agents. Here, we identify an N-benzylated triamine (denoted as NBTA) as a highly selective and potent NMDA-receptor channel blocker selected by screening a reduced dipeptidomimetic synthetic combinatorial library. NBTA blocks recombinant NMDA receptors expressed in Xenopus laevis oocytes with a mean IC50 of 80 nM; in contrast, it does not block GluR1, a glutamate receptor of the non-NMDA subtype. The blocking activity of NBTA on NMDA receptors exhibits the characteristics of an open-channel blocker: (i) no competition with agonists, (ii) voltage dependence, and (iii) use dependence. Significantly, NBTA protects rodent hippocampal neurons from NMDA receptor, but not kainate receptor-mediated excitotoxic cell death, in agreement with its selective action on the corresponding recombinant receptors. Mutagenesis data indicate that the N site, a key asparagine on the M2 transmembrane segment of the NR1 subunit, is the main determinant of the blocker action. The results highlight the potential of this compound as a neuroprotectant.
Resumo:
Interactions of sulfhydryl reagents with introduced cysteines in the pore-forming (Kir6.2) subunits of the KATP channel were examined. 2-Aminoethyl methanethiosulfonate (MTSEA+) failed to modify Cd2+-insensitive control-Kir6.2 channels, but rapidly and irreversibly modified Kir6.2[L164C] (L164C) channels. Although a single Cd2+ ion is coordinated by L164C, four MTSEA+ “hits” can occur, each sequentially reducing the single-channel current. A dimeric fusion of control-Kir6.2 and L164C subunits generates Cd2+-insensitive channels, confirming that at least three cysteines are required for coordination, but MTSEA+ modification of the dimer occurs in two hits. L164C channels were not modified by bromotrimethyl ammoniumbimane (qBBr+), even though qBBr+ caused voltage-dependent block (as opposed to modification) that was comparable to that of MTSEA+ or 3-(triethylammonium)propyl methanethiosulfonate (MTSPTrEA+), implying that qBBr+ can also enter the inner cavity but does not modify L164C residues. The Kir channel pore structure was modeled by homology with the KcsA crystal structure. A stable conformation optimally places the four L164C side chains for coordination of a single Cd2+ ion. Modification of these cysteines by up to four MTSEA+ (or three MTSPTrEA+, or two qBBr+) does not require widening of the cavity to accommodate the derivatives within it. However, like the KcsA crystal structure, the energy-minimized model shows a narrowing at the inner entrance, and in the Kir6.2 model this narrowing excludes all ions. To allow entry of ions as large as MTSPTrEA+ or qBBr+, the entrance must widen to >8 Å, but this widening is readily accomplished by minimal M2 helix motion and side-chain rearrangement.
Resumo:
Mutational and biophysical analysis suggests that an intracellular COOH-terminal domain of the large conductance Ca2+-activated K+ channel (BK channel) contains Ca2+-binding site(s) that are allosterically coupled to channel opening. However the structural basis of Ca2+ binding to BK channels is unknown. To pursue this question, we overexpressed the COOH-terminal 280 residues of the Drosophila slowpoke BK channel (Dslo-C280) as a FLAG- and His6-tagged protein in Escherichia coli. We purified Dslo-C280 in soluble form and used a 45Ca2+-overlay protein blot assay to detect Ca2+ binding. Dslo-C280 exhibits specific binding of 45Ca2+ in comparison with various control proteins and known EF-hand Ca2+-binding proteins. A mutation (D5N5) of Dslo-C280, in which five consecutive Asp residues of the “Ca-bowl” motif are changed to Asn, reduces 45Ca2+-binding activity by 56%. By electrophysiological assay, the corresponding D5N5 mutant of the Drosophila BK channel expressed in HEK293 cells exhibits lower Ca2+ sensitivity for activation and a shift of ≈+80 mV in the midpoint voltage for activation. This effect is associated with a decrease in the Hill coefficient (N) for activation by Ca2+ and a reduction in apparent Ca2+ affinity, suggesting the loss of one Ca2+-binding site per monomer. These results demonstrate a functional correlation between Ca2+ binding to a specific region of the BK protein and Ca2+-dependent activation, thus providing a biochemical approach to study this process.
Resumo:
In wheat (Triticum aestivum) seedlings subjected to a mild water stress (water potential of −0.3 MPa), the leaf-elongation rate was reduced by one-half and the mitotic activity of mesophyll cells was reduced to 42% of well-watered controls within 1 d. There was also a reduction in the length of the zone of mesophyll cell division to within 4 mm from the base compared with 8 mm in control leaves. However, the period of division continued longer in the stressed than in the control leaves, and the final cell number in the stressed leaves reached 85% of controls. Cyclin-dependent protein kinase enzymes that are required in vivo for DNA replication and mitosis were recovered from the meristematic zone of leaves by affinity for p13suc1. Water stress caused a reduction in H1 histone kinase activity to one-half of the control level, although amounts of the enzyme were unaffected. Reduced activity was correlated with an increased proportion of the 34-kD Cdc2-like kinase (an enzyme sharing with the Cdc2 protein of other eukaryotes the same size, antigenic sites, affinity for p13suc1, and H1 histone kinase catalytic activity) deactivated by tyrosine phosphorylation. Deactivation to 50% occurred within 3 h of stress imposition in cells at the base of the meristematic zone and was therefore too fast to be explained by a reduction in the rate at which cells reached mitosis because of slowing of growth; rather, stress must have acted more immediately on the enzyme. The operation of controls slowing the exit from the G1 and G2 phases is discussed. We suggest that a water-stress signal acts on Cdc2 kinase by increasing phosphorylation of tyrosine, causing a shift to the inhibited form and slowing cell production.
Resumo:
Increasing evidence suggests that changes in cytosolic Ca2+ levels and phosphorylation play important roles in the regulation of stomatal aperture and as ion transporters of guard cells. However, protein kinases responsible for Ca2+ signaling in guard cells remain to be identified. Using biochemical approaches, we have identified a Ca2+-dependent protein kinase with a calmodulin-like domain (CDPK) in guard cell protoplasts of Vicia faba. Both autophosphorylation and catalytic activity of CDPK are Ca2+ dependent. CDPK exhibits a Ca2+-induced electrophoretic mobility shift and its Ca2+-dependent catalytic activity can be inhibited by the calmodulin antagonists trifluoperazine and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide. Antibodies to soybean CDPKα cross-react with CDPK. Micromolar Ca2+ concentrations stimulate phosphorylation of several proteins from guard cells; cyclosporin A, a specific inhibitor of the Ca2+-dependent protein phosphatase calcineurin enhances the Ca2+-dependent phosphorylation of several soluble proteins. CDPK from guard cells phosphorylates the K+ channel KAT1 protein in a Ca2+-dependent manner. These results suggest that CDPK may be an important component of Ca2+ signaling in guard cells.