970 resultados para Intracranial electroencephalography


Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is known that post-movement beta synchronization (PMBS) is involved both in active inhibition and in sensory reafferences processes. The aim of this study was examine the temporal and spatial dynamics of the PMBS involved during multi-limb coordination task. We investigated post-switching beta synchronization (assigned PMBS) using time-frequency and source estimations analyzes. Participants (n = 17) initiated an auditory-paced bimanual tapping. After a 1500 ms preparatory period, an imperative stimulus required to either selectively stop the left while maintaining the right unimanual tapping (Switch condition: SWIT) or to continue the bimanual tapping (Continue condition: CONT). PMBS significantly increased in SWIT compared to CONT with maximal difference within right central region in broad-band 14âeuro"30 Hz and within left central region in restricted-band 22âeuro"26 Hz. Source estimations localized these effects within right pre-frontal cortex and left parietal cortex, respectively. A negative correlation showed that participants with a low percentage of errors in SWIT had a large PMBS amplitude within right parietal and frontal cortices. This study shows for the first time simultaneous PMBS with distinct functions in different brain regions and frequency ranges. The left parietal PMBS restricted to 22âeuro"26 Hz could reflect the sensory reafferences of the right hand tapping disrupted by the switching. In contrast, the right pre-frontal PMBS in a broad-band 14âeuro"30 Hz is likely reflecting the active inhibition of the left hand stopped. Finally, correlations between behavioral performance and the magnitude of the PMBS suggest that beta oscillations can be viewed as a marker of successful active inhibition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the case of a man with a history of complex partial seizures and severe language, cognitive and behavioural regression during early childhood (3.5 years), who underwent epilepsy surgery at the age of 25 years. His early epilepsy had clinical and electroencephalogram features of the syndromes of epilepsy with continuous spike waves during sleep and acquired epileptic aphasia (Landau-Kleffner syndrome), which we considered initially to be of idiopathic origin. Seizures recurred at 19 years and presurgical investigations at 25 years showed a lateral frontal epileptic focus with spread to Broca's area and the frontal orbital regions. Histopathology revealed a focal cortical dysplasia, not visible on magnetic resonance imaging. The prolonged but reversible early regression and the residual neuropsychological disorders during adulthood were probably the result of an active left frontal epilepsy, which interfered with language and behaviour during development. Our findings raise the question of the role of focal cortical dysplasia as an aetiology in the syndromes of epilepsy with continuous spike waves during sleep and acquired epileptic aphasia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To report a rare case of primary meningioma of the middle ear. METHOD: We describe the case of a 55-year-old woman who presented with decreased hearing and fullness in the left ear, with a middle-ear mass. We also review the world literature regarding primary extracranial meningioma of the middle ear and its management. RESULTS: Primary middle-ear meningioma, a rare clinical entity, was diagnosed in this patient based on an initial transmastoid biopsy. Magnetic resonance imaging with gadolinium enhancement excluded the presence of an intracranial component. Complete excision of the tumour was achieved using a combined approach tympanoplasty. The patient had an uneventful post-operative course. CONCLUSION: Meningiomas, although rare in the middle ear, need to be included in the differential diagnosis of middle-ear lesions presenting to the otolaryngologist. This case emphasises the management strategy required when dealing with a middle-ear mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Decision-making in an uncertain environment is driven by two major needs: exploring the environment to gather information or exploiting acquired knowledge to maximize reward. The neural processes underlying exploratory decision-making have been mainly studied by means of functional magnetic resonance imaging, overlooking any information about the time when decisions are made. Here, we carried out an electroencephalography (EEG) experiment, in order to detect the time when the brain generators responsible for these decisions have been sufficiently activated to lead to the next decision. Our analyses, based on a classification scheme, extract time-unlocked voltage topographies during reward presentation and use them to predict the type of decisions made on the subsequent trial. Classification accuracy, measured as the area under the Receiver Operator's Characteristic curve was on average 0.65 across 7 subjects. Classification accuracy was above chance levels already after 516 ms on average, across subjects. We speculate that decisions were already made before this critical period, as confirmed by a positive correlation with reaction times across subjects. On an individual subject basis, distributed source estimations were performed on the extracted topographies to statistically evaluate the neural correlates of decision-making. For trials leading to exploration, there was significantly higher activity in dorsolateral prefrontal cortex and the right supramarginal gyrus; areas responsible for modulating behavior under risk and deduction. No area was more active during exploitation. We show for the first time the temporal evolution of differential patterns of brain activation in an exploratory decision-making task on a single-trial basis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT (English)An accurate processing of the order between sensory events at the millisecond time scale is crucial for both sensori-motor and cognitive functions. Temporal order judgment (TOJ) tasks, is the ability of discriminating the order of presentation of several stimuli presented in a rapid succession. The aim of the present thesis is to further investigate the spatio-temporal brain mechanisms supporting TOJ. In three studies we focus on the dependency of TOJ accuracy on the brain states preceding the presentation of TOJ stimuli, the neural correlates of accurate vs. inaccurate TOJ and whether and how TOJ performance can be improved with training.In "Pre-stimulus beta oscillations within left posterior sylvian regions impact auditory temporal order judgment accuracy" (Bernasconi et al., 2011), we investigated if the brain activity immediately preceding the presentation of the stimuli modulates TOJ performance. By contrasting the electrophysiological activity before the stimulus presentation as a function of TOJ accuracy we observed a stronger pre-stimulus beta (20Hz) oscillatory activity within the left posterior sylvian region (PSR) before accurate than inaccurate TOJ trials.In "Interhemispheric coupling between the posterior sylvian regions impacts successful auditory temporal order judgment" (Bernasconi et al., 2010a), and "Plastic brain mechanisms for attaining auditory temporal order judgment proficiency" (Bernasconi et al., 2010b), we investigated the spatio-temporal brain dynamics underlying auditory TOJ. In both studies we observed a topographic modulation as a function of TOJ performance at ~40ms after the onset of the first sound, indicating the engagement of distinct configurations of intracranial generators. Source estimations in the first study revealed a bilateral PSR activity for both accurate and inaccurate TOJ trials. Moreover, activity within left, but not right, PSR correlated with TOJ performance. Source estimations in the second study revealed a training-induced left lateralization of the initial bilateral (i.e. PSR) brain response. Moreover, the activity within the left PSR region correlated with TOJ performance.Based on these results, we suggest that a "temporal stamp" is established within left PSR on the first sound within the pair at early stages (i.e. ~40ms) of cortical processes, but is critically modulated by inputs from right PSR (Bernasconi et al., 2010a; b). The "temporal stamp" on the first sound may be established via a sensory gating or prior entry mechanism.Behavioral and brain responses to identical stimuli can vary due to attention modulation, vary with experimental and task parameters or "internal noise". In a fourth experiment (Bernasconi et al., 2011b) we investigated where and when "neural noise" manifest during the stimulus processing. Contrasting the AEPs of identical sound perceived as High vs. Low pitch, a topographic modulation occurred at ca. 100ms after the onset of the sound. Source estimation revealed activity within regions compatible with pitch discrimination. Thus, we provided neurophysiological evidence for the variation in perception induced by "neural noise".ABSTRACT (French)Un traitement précis de l'ordre des événements sensoriels sur une échelle de temps de milliseconde est crucial pour les fonctions sensori-motrices et cognitives. Les tâches de jugement d'ordre temporel (JOT), consistant à présenter plusieurs stimuli en succession rapide, sont traditionnellement employées pour étudier les mécanismes neuronaux soutenant le traitement d'informations sensorielles qui varient rapidement. Le but de cette thèse est d'étudier le mécanisme cérébral soutenant JOT. Dans les trois études présentées nous nous sommes concentrés sur les états du cerveau précédant la présentation des stimuli de JOT, les bases neurales pour un JOT correct vs. incorrect et sur la possibilité et les moyens d'améliorer l'exécution du JOT grâce à un entraînement.Dans "Pre-stimulus beta oscillations within left posterior sylvian regions impact auditory temporal order judgment accuracy" (Bernasconi et al., 2011),, nous nous sommes intéressé à savoir si l'activité oscillatoire du cerveau au pré-stimulus modulait la performance du JOT. Nous avons contrasté l'activité électrophysiologique en fonction de la performance TOJ, mesurant une activité oscillatoire beta au pré-stimulus plus fort dans la région sylvian postérieure gauche (PSR) liée à un JOT correct.Dans "Interhemispheric coupling between the posterior sylvian regions impacts successful auditory temporal order judgment" (Bernasconi et al., 2010a), et "Plastic brain mechanisms for attaining auditory temporal order judgment proficiency" (Bernasconi et al., 2010b), nous avons étudié la dynamique spatio-temporelle dans le cerveau impliqué dans le traitement du JOT auditif. Dans ses deux études, nous avons observé une modulation topographique à ~40ms après le début du premier son, en fonction de la performance JOT, indiquant l'engagement des configurations de générateurs intra- crâniens distincts. La localisation de source dans la première étude indique une activité bilatérale de PSR pour des JOT corrects vs. incorrects. Par ailleurs, l'activité dans PSR gauche, mais pas dans le droit, est corrélée avec la performance du JOT. La localisation de source dans la deuxième étude indiquait une latéralisation gauche induite par l'entraînement d'une réponse initialement bilatérale du cerveau. D'ailleurs, l'activité dans la région PSR gauche corrèlait avec la performance de TOJ.Basé sur ces résultats, nous proposons qu'un « timbre-temporel » soit établi très tôt (c.-à-d. à ~40ms) sur le premier son par le PSR gauche, mais module par l'activité du PSR droite (Bernasconi et al., 2010a ; b). « Le timbre- temporel » sur le premier son peut être établi par le mécanisme neuronal de type « sensory gating » ou « prior entry ».Les réponses comportementales et du cerveau aux stimuli identiques peut varier du à des modulations d'attention ou à des variations dans les paramètres des tâches ou au bruit interne du cerveau. Dans une quatrième expérience (Bernasconi et al. 2011B), nous avons étudié où et quand le »bruit neuronal« se manifeste pendant le traitement des stimuli. En contrastant les AEPs de sons identiques perçus comme aigus vs. grave, nous avons mesuré une modulation topographique à env. 100ms après l'apparition du son. L'estimation de source a révélé une activité dans les régions compatibles avec la discrimination de fréquences. Ainsi, nous avons fourni des preuves neurophysiologiques de la variation de la perception induite par le «bruit neuronal».

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Intravenous thrombolysis (IVT) for stroke seems to be beneficial independent of the underlying etiology. Whether this is also true for cervical artery dissection (CAD) is addressed in this study.METHODS: We used the Swiss IVT databank to compare outcome and complications of IVT-treated patients with CAD with IVT-treated patients with other etiologies (non-CAD patients). Main outcome and complication measures were favorable 3-month outcome, intracranial cerebral hemorrhage, and recurrent ischemic stroke. Modified Rankin Scale score <or=1 at 3 months was considered favorable.RESULTS: Fifty-five (5.2%) of 1062 IVT-treated patients had CAD. Patients with CAD were younger (median age 50 versus 70 years) but had similar median National Institutes of Health Stroke Scale scores (14 versus 13) and time to treatment (152.5 versus 156 minutes) as non-CAD patients. In the CAD group, 36% (20 of 55) had a favorable 3-month outcome compared with 44% (447 of 1007) non-CAD patients (OR, 0.72; 95% CI, 0.41 to 1.26), which was less favorable after adjustment for age, gender, and National Institutes of Health Stroke Scale score (OR, 0.50; 95% CI, 0.27 to 0.95; P=0.03). Intracranial cerebral hemorrhages (asymptomatic, symptomatic, fatal) were equally frequent in CAD (14% [7%, 7%, 2%]) and non-CAD patients (14% [9%, 5%, 2%]; P=0.99). Recurrent ischemic stroke occurred in 1.8% of patients with CAD and in 3.7% of non-CAD-patients (P=0.71).CONCLUSIONS: IVT-treated patients with CAD do not recover as well as IVT-treated non-CAD patients. However, intracranial bleedings and recurrent ischemic strokes were equally frequent in both groups. They do not account for different outcomes and indicate that IVT should not be excluded in patients who may have CAD. Hemodynamic compromise or frequent tandem occlusions might explain the less favorable outcome of patients with CAD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deletions on the short arm of chromosome 4 cause Wolf-Hirschhorn syndrome (WHS) and Pitt-Rogers-Danks syndrome (PRDS). WHS is associated with severe growth and mental retardation, microcephaly, a characteristic facies and congenital malformations. The PRDS phenotype is similar to WHS but generally less severe. Seizures occur in the majority of WHS and PRDS patients. Sgrò et al. [17] described a stereotypic electroclinical pattern in four unrelated WHS patients, consisting of intermittent bursts of 2-3 Hz high voltage slow waves with spike wave activity in the parietal areas during drowsiness and sleep associated with myoclonic jerks. We report a patient with PRDS and the typical EEG pattern and review 14 WHS patients with similar EEG findings reported in the literature. CONCLUSION: Awareness and recognition of the characteristic electroclinical findings in Wolf-Hirschhorn syndrome and Pitt-Rogers-Danks syndrome might help in the early diagnosis of such patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electroencephalography (EEG) is an easily accessible and low-cost modality that might prove to be a particularly powerful tool for the identification of subtle functional changes preceding structural or metabolic deficits in progressive mild cognitive impairment (PMCI). Most previous contributions in this field assessed quantitative EEG differences between healthy controls, MCI and Alzheimer's disease(AD) cases leading to contradictory data. In terms of MCI conversion to AD, certain longitudinal studies proposed various quantitative EEG parameters for an a priori distinction between PMCI and stable MCI. However, cross-sectional comparisons revealed a substantial overlap in these parameters between MCI patients and elderly controls. Methodological differences including variable clinical definition of MCI cases and substantial interindividual differences within the MCI group could partly explain these discrepancies. Most importantly, EEG measurements without cognitive demand in both cross-sectional and longitudinal designs have demonstrated limited sensitivity and generally do not produce significant group differences in spectral EEG parameters. Since the evolution of AD is characterized by the progressive loss of functional connectivity within neocortical association areas, event-modulated EEG dynamic analysis which makes it possible to investigate the functional activation of neocortical circuits may represent a more sensitive method to identify early alterations of neuronal networks predictive of AD development among MCI cases. The present review summarizes clinically significant results of EEG activation studies in this field and discusses future perspectives of research aiming to reach an early and individual prediction of cognitive decline in healthy elderly controls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AbstractDespite advances in diagnosis and treatment made over the past two decades, high-gradeprimary brain tumors remain incurable neoplasms. Glioblastoma (GBM) represents the mostmalignant stage of astrocytic brain tumors. Identification of diagnostic and prognostic markers ineasily accessible biological material, such as plasma or cerebro-spinal fluid (CSF), would greatlyfacilitate the management of GBM patients. Elucidation of the molecular mechanisms that underlie thefunction of the factors implicated in GBM development would pave the way towards their potentialutility in cancer-targeting therapy.MIC-1/GDF15 (Macrophage Inhibitory Cytokine-1/ Growth Differentiation Factor 15), asecreted protein of the TGF-β superfamily, emerged as a candidate marker exhibiting increasingmRNA expression during astrocytoma malignant progression. However, injection of MIC-1/GDF15over-expressing GBM cell lines into nude mice has been previously shown to completely abolish theinherent tumorigenicity.In this study, determination of MIC-1/GDF15 protein levels in the CSF of a cohort of 94patients with intracranial tumors including astrocytomas (grades II, III and IV), meningioma, andmetastasis revealed significantly increased concentrations in GBM patients as compared to controlcohort of patients treated for non-neoplastic diseases. However, MIC-1/GDF15 levels were notelevated in the matching plasma samples from these patients. Most interestingly, GBM patients withthe increased concentrations of MIC-1/GDF15 in the CSF had worse outcome.In GBM tissue, it was found that the expression of MIC-1/GDF15 gene is low. Promotermethylation of the gene may partially explain the overall low expression levels. Investigation of thecellular origin of MIC-1/GDF15 expression in GBM tissue led to the MIC-1/GDF15 protein detectionin a subpopulation of the tumor infiltrating macrophages. These findings substantiated the workinghypothesis of MIC-1/GDF15 as harboring tumor-suppressive properties in GBM. Analysis of thesignaling pathway mediated by MIC-1/GDF15 in GBM highlighted the potential role of TGF-β signaltransduction. However, the lack of the functional response to the presence of MIC-1/GDF15 in-vitrosuggested operation of a paracrine loop for suppression of tumor formation which is evident solely invivo.In conclusion, MIC-1/GDF15 protein measured in the CSF may have diagnostic andprognostic values in patients with intracranial tumors. Molecular studies collectively proposeimplication of the tumor-host interactions in mediating the MIC-1/GDF15 tumor-suppressing activityduring GBM development.RésuméMalgré les progrès durant ces deux dernières décennies dans le diagnostique et le traitementdes tumeurs du cerveau primaires, ces néoplasmes restent incurables. Le glioblastome représente laforme la plus maligne des tumeurs astrocytiques du cerveau (astrocytomes). Pour le diagnostic et lepronostic, l'identification de marqueurs présents dans des substances facilement accessibles comme leplasma où le liquide céphalorachidien (LCR) faciliterait beaucoup la prise en charge des patients. Lacompréhension des mécanismes moléculaires de facteurs impliqués dans le développement du GBMpourrait ouvrir la voie vers l'utilisation de ces mécanismes dans des thérapies ciblées.MIC-1/GDF15 (Macrophage Inhibitory Cytokine-1/ Growth Differentiation Factor 15), uneprotéine secrétée qui appartient à la superfamille TGF-β, s'est révélé être un marqueur candidat, dontl'expression d'ARN messager augmente pendant la progression des astrocytomes malins. Cependant,une précedente étude montre que l'injection des lignées cellulaires de GBM fortement productrices deMIC-1/GDF15 dans des souris immunodéprimées abolit la tumorigénicité.Dans cette étude, les mesures dans une cohorte de 94 patients atteints de tumeursintracrâniennes comprenant des astrocytomes (grades II, III et IV), méningiomes et métastases,présentent des augmentations significatives des niveaux protéiques de MIC-1/GDF15 dans le LCRdes patients atteints de GBM par rapport aux patients traités pour des maladies non cancéreuses.Cependant, les niveaux de MIC-1/GDF15 n'étaient pas spécialement élevés dans le plasma. De plus,les patients atteints d'un GBM avec des niveaux élevés de MIC-1/GDF15 dans le LCR ont survécumoins longtemps. Dans les tissus de glioblastome, on observe que le gène MIC-1/GDF15 est peuexprimé. La méthylation du promoteur explique partiellement le faible niveau d'expression du gène.La recherche l'origine cellulaire de l'expression de MIC-1/GDF15, a permis de découvrir la présencede protéines MIC-1/GDF15 dans une sous-population de macrophages qui infiltrent les tumeurs. Cetteobservation supporte l'hypothèse que MIC-1/GDF15 présentait des propriétés de suppression destumeurs de type GBM. Des études sur les voies de signalisation régulées par MIC-1/GDF15 dans lesGBMs ont souligné l'importance de la voie de transduction du signal TGF-β. Cependant, l'absence deréponse fonctionnelle à MIC-1/GDF15 in vitro suggère fortement l'activité d'une boucle paracrinepour la répression de la formation de tumeur, qui n'est observé que in vivo.En conclusion, la protéine MIC-1/GDF15 mesurée dans le LCR pourrait avoir une valeur pourle diagnostic et le pronostic chez les patients atteints de GBM. Les études moléculaires suggèrent unepossible implication de l'interaction hôte-tumeur dans l'activité anti-tumorale de MIC-1/GDF15 sur leGBM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To determine the incidence and risk factors of electrical seizures and other electrical epileptic activity using continuous EEG (cEEG) in patients with acute stroke. METHODS: One hundred consecutive patients with acute stroke admitted to our stroke unit underwent cEEG using 10 electrodes. In addition to electrical seizures, repetitive focal sharp waves (RSHWs), repetitive focal spikes (RSPs), and periodic lateralized epileptic discharges (PLEDs) were recorded. RESULTS: In the 100 patients, cEEG was recorded for a mean duration of 17 hours 34 minutes (range 1 hour 12 minutes to 37 hours 10 minutes). Epileptic activity occurred in 17 patients and consisted of RSHWs in seven, RSPs in seven, and PLEDs in three. Electrical seizures occurred in two patients. On univariate Cox regression analysis, predictors for electrical epileptic activity were stroke severity (high score on the National Institutes of Health Stroke Scale) (hazard ratio [HR] 1.12; p = 0.002), cortical involvement (HR 5.71; p = 0.021), and thrombolysis (HR 3.27; p = 0.040). Age, sex, stroke type, use of EEG-modifying medication, and cardiovascular risk factors were not predictors of electrical epileptic activity. On multivariate analysis, stroke severity was the only independent predictor (HR 1.09; p = 0.016). CONCLUSION: In patients with acute stroke, electrical epileptic activity occurs more frequently than previously suspected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: No randomized study has yet compared efficacy and safety of aspirin and anticoagulants in patients with spontaneous dissection of the cervical carotid artery (sICAD). METHODS: Prospectively collected data from 298 consecutive patients with sICAD (56% men; mean age 46 +/- 10 years) treated with anticoagulants alone (n = 202) or aspirin alone (n = 96) were retrospectively analyzed. Admission diagnosis was ischemic stroke in 165, TIA in 37, retinal ischemia in 8, and local symptoms and signs (headache, neck pain, Horner syndrome, cranial nerve palsy) in 80 patients, while 8 patients were asymptomatic. Clinical follow-up was obtained after 3 months by neurologic examination (97% of patients) or structured telephone interview. Outcome measures were 1) new cerebral ischemic events, defined as ischemic stroke, TIA, or retinal ischemia, 2) symptomatic intracranial hemorrhage, and 3) major extracranial bleeding. RESULTS: During follow-up, ischemic events were rare (ischemic stroke, 0.3%; TIA, 3.4%; retinal ischemia, 1%); their frequency did not significantly differ between patients treated with anticoagulants (5.9%) and those treated with aspirin (2.1%). The same was true for hemorrhagic adverse events (anticoagulants, 2%; aspirin, 1%). New ischemic events were significantly more frequent in patients with ischemic events at onset (6.2%) than in patients with local symptoms or asymptomatic patients (1.1%). CONCLUSIONS: Within the limitations of a nonrandomized study, our data suggest that frequency of new cerebral and retinal ischemic events in patients with spontaneous dissection of the cervical carotid artery is low and probably independent of the type of antithrombotic treatment (aspirin or anticoagulants).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Management of neurocritical care patients is focused on the prevention and treatment of secondary brain injury, i.e. the number of pathophysiological intracerebral (edema, ischemia, energy dysfunction, seizures) and systemic (hyperthermia, disorders of glucose homeostasis) events that occur following the initial insult (stroke, hemorrhage, head trauma, brain anoxia) that may aggravate patient outcome. The current therapeutic paradigm is based on multimodal neuromonitoring, including invasive (intracranial pressure, brain oxygen, cerebral microdialysis) and non-invasive (transcranial doppler, near-infrared spectroscopy, EEG) tools that allows targeted individualized management of acute coma in the early phase. The aim of this review is to describe the utility of multimodal neuromonitoring for the critical care management of acute coma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: The purpose of this study was to analyze whether fever control attenuates cerebral metabolic distress after aneurysmal subarachnoid hemorrhage (SAH). METHODS: Eighteen SAH patients, who underwent intracranial pressure (ICP) and cerebral microdialysis monitoring and were treated with induced normothermia for refractory fever (body temperature >or=38.3 degrees C, despite antipyretics), were studied. Levels of microdialysate lactate/pyruvate ratio (LPR) and episodes of cerebral metabolic crisis (LPR >40) were analyzed during fever and induced normothermia, at normal and high ICP (>20 mm Hg). RESULTS: Compared to fever, induced normothermia resulted in lower LPR (40+/-24 versus 32+/-9, P<0.01) and a reduced incidence of cerebral metabolic crisis (13% versus 5%, P<0.05) at normal ICP. During episodes of high ICP, induced normothermia was associated with a similar reduction of LPR, fewer episodes of cerebral metabolic crisis (37% versus 8%, P<0.01), and lower ICP (32+/-11 versus 28+/-12 mm Hg, P<0.05). CONCLUSIONS: Fever control is associated with reduced cerebral metabolic distress in patients with SAH, irrespective of ICP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Thrombin potently activates platelets through the protease-activated receptor PAR-1. Vorapaxar is a novel antiplatelet agent that selectively inhibits the cellular actions of thrombin through antagonism of PAR-1. METHODS: We randomly assigned 26,449 patients who had a history of myocardial infarction, ischemic stroke, or peripheral arterial disease to receive vorapaxar (2.5 mg daily) or matching placebo and followed them for a median of 30 months. The primary efficacy end point was the composite of death from cardiovascular causes, myocardial infarction, or stroke. After 2 years, the data and safety monitoring board recommended discontinuation of the study treatment in patients with a history of stroke owing to the risk of intracranial hemorrhage. RESULTS: At 3 years, the primary end point had occurred in 1028 patients (9.3%) in the vorapaxar group and in 1176 patients (10.5%) in the placebo group (hazard ratio for the vorapaxar group, 0.87; 95% confidence interval [CI], 0.80 to 0.94; P<0.001). Cardiovascular death, myocardial infarction, stroke, or recurrent ischemia leading to revascularization occurred in 1259 patients (11.2%) in the vorapaxar group and 1417 patients (12.4%) in the placebo group (hazard ratio, 0.88; 95% CI, 0.82 to 0.95; P=0.001). Moderate or severe bleeding occurred in 4.2% of patients who received vorapaxar and 2.5% of those who received placebo (hazard ratio, 1.66; 95% CI, 1.43 to 1.93; P<0.001). There was an increase in the rate of intracranial hemorrhage in the vorapaxar group (1.0%, vs. 0.5% in the placebo group; P<0.001). CONCLUSIONS: Inhibition of PAR-1 with vorapaxar reduced the risk of cardiovascular death or ischemic events in patients with stable atherosclerosis who were receiving standard therapy. However, it increased the risk of moderate or severe bleeding, including intracranial hemorrhage. (Funded by Merck; TRA 2P-TIMI 50 ClinicalTrials.gov number, NCT00526474.).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Transcranial Doppler (TCD) is widely used to monitor the temporal course of vasospasm after subarachnoid hemorrhage (SAH), but its ability to predict clinical deterioration or infarction from delayed cerebral ischemia (DCI) remains controversial. We sought to determine the prognostic utility of serial TCD examination after SAH. METHODS: We analyzed 1877 TCD examinations in 441 aneurysmal SAH patients within 14 days of onset. The highest mean blood flow velocity (mBFV) value in any vessel before DCI onset was recorded. DCI was defined as clinical deterioration or computed tomographic evidence of infarction caused by vasospasm, with adjudication by consensus of the study team. Logistic regression was used to calculate adjusted odds ratios for DCI risk after controlling for other risk factors. RESULTS: DCI occurred in 21% of patients (n = 92). Multivariate predictors of DCI included modified Fisher computed tomographic score (P = 0.001), poor clinical grade (P = 0.04), and female sex (P = 0.008). After controlling for these variables, all TCD mBFV thresholds between 120 and 180 cm/s added a modest degree of incremental predictive value for DCI at nearly all time points, with maximal sensitivity by SAH day 8. However, the sensitivity of any mBFV more than 120 cm/s for subsequent DCI was only 63%, with a positive predictive value of 22% among patients with Hunt and Hess grades I to III and 36% in patients with Hunt and Hess grades IV and V. Positive predictive value was only slightly higher if mBFV exceeded 180 cm/s. CONCLUSION: Increased TCD flow velocities imply only a mild incremental risk of DCI after SAH, with maximal sensitivity by day 8. Nearly 40% of patients with DCI never attained an mBFV more than 120 cm/s during the course of monitoring. Given the poor overall sensitivity of TCD, improved methods for identifying patients at high risk for DCI after SAH are needed.