972 resultados para Interpreting geophysical logs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores - Área de Especialização de Telecomunicações

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese para a obtenção do grau de Doutor em Economia, especialidade de Economia da Empresa

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geophysical data acquired on the conjugate margins system of the Gulf of Lion and West Sardinia (GLWS) is unique in its ability to address fundamental questions about rifting (i.e. crustal thinning, the nature of the continent-ocean transition zone, the style of rifting and subsequent evolution, and the connection between deep and surface processes). While the Gulf of Lion (GoL) was the site of several deep seismic experiments, which occurred before the SARDINIA Experiment (ESP and ECORS Experiments in 1981 and 1988 respectively), the crustal structure of the West Sardinia margin remains unknown. This paper describes the first modeling of wide-angle and near-vertical reflection multi-channel seismic (MCS) profiles crossing the West Sardinia margin, in the Mediterranean Sea. The profiles were acquired, together with the exact conjugate of the profiles crossing the GoL, during the SARDINIA experiment in December 2006 with the French R/V L'Atalante. Forward wide-angle modeling of both data sets (wide-angle and multi-channel seismic) confirms that the margin is characterized by three distinct domains following the onshore unthinned, 26 km-thick continental crust : Domain V, where the crust thins from 26 to 6 km in a width of about 75 km; Domain IV where the basement is characterized by high velocity gradients and lower crustal seismic velocities from 6.8 to 7.25 km/s, which are atypical for either crustal or upper mantle material, and Domain III composed of "atypical" oceanic crust.The structure observed on the West Sardinian margin presents a distribution of seismic velocities that is symmetrical with those observed on the Gulf of Lion's side, except for the dimension of each domain and with respect to the initiation of seafloor spreading. This result does not support the hypothesis of simple shear mechanism operating along a lithospheric detachment during the formation of the Liguro-Provencal basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure and nature of the crust underlying the Santos Basin-São Paulo Plateau System (SSPS), in the SE Brazilian margin, are discussed based on five wide-angle seismic profiles acquired during the Santos Basin (SanBa) experiment in 2011. Velocity models allow us to precisely divide the SSPS in six domains from unthinned continental crust (Domain CC) to normal oceanic crust (Domain OC). A seventh domain (Domain D), a triangular shape region in the SE of the SSPS, is discussed by Klingelhoefer et al. (2014). Beneath the continental shelf, a similar to 100km wide necking zone (Domain N) is imaged where the continental crust thins abruptly from similar to 40km to less than 15km. Toward the ocean, most of the SSPS (Domains A and C) shows velocity ranges, velocity gradients, and a Moho interface characteristic of the thinned continental crust. The central domain (Domain B) has, however, a very heterogeneous structure. While its southwestern part still exhibits extremely thinned (7km) continental crust, its northeastern part depicts a 2-4km thick upper layer (6.0-6.5km/s) overlying an anomalous velocity layer (7.0-7.8km/s) and no evidence of a Moho interface. This structure is interpreted as atypical oceanic crust, exhumed lower crust, or upper continental crust intruded by mafic material, overlying either altered mantle in the first two cases or intruded lower continental crust in the last case. The deep structure and v-shaped segmentation of the SSPS confirm that an initial episode of rifting occurred there obliquely to the general opening direction of the South Atlantic Central Segment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P and S receiver functions (PRF and SRF) from 19 seismograph stations in the Gibraltar Arc and the Iberian Massif reveal new details of the regional deep structure. Within the high-velocity mantle body below southern Spain the 660-km discontinuity is depressed by at least 20 km. The Ps phase from the 410-km discontinuity is missing at most stations in the Gibraltar Arc. A thin (similar to 50 km) low-S-velocity layer atop the 410-km discontinuity is found under the Atlantic margin. At most stations the S410p phase in the SRFs arrives 1.0-2.5 s earlier than predicted by IASP91 model, but, for the propagation paths through the upper mantle below southern Spain, the arrivals of S410p are delayed by up to +1.5 s. The early arrivals can be explained by elevated Vp/Vs ratio in the upper mantle or by a depressed 410-km discontinuity. The positive residuals are indicative of a low (similar to 1.7 versus similar to 1.8 in IASP91) Vp/Vs ratio. Previously, the low ratio was found in depleted lithosphere of Precambrian cratons. From simultaneous inversion of the PRFs and SRFs we recognize two types of the mantle: 'continental' and 'oceanic'. In the 'continental' upper mantle the S-wave velocity in the high-velocity lid is 4.4-4.5 km s(-1), the S-velocity contrast between the lid and the underlying mantle is often near the limit of resolution (0.1 km s(-1)), and the bottom of the lid is at a depth reaching 90 100 km. In the 'oceanic' domain, the S-wave velocities in the lid and the underlying mantle are typically 4.2-4.3 and similar to 4.0 km s(-1), respectively. The bottom of the lid is at a shallow depth (around 50 km), and at some locations the lid is replaced by a low S-wave velocity layer. The narrow S-N-oriented band of earthquakes at depths from 70 to 120 km in the Alboran Sea is in the 'continental' domain, near the boundary between the 'continental' and 'oceanic' domains, and the intermediate seismicity may be an effect of ongoing destruction of the continental lithosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seismic ambient noise tomography is applied to central and southern Mozambique, located in the tip of the East African Rift (EAR). The deployment of MOZART seismic network, with a total of 30 broad-band stations continuously recording for 26 months, allowed us to carry out the first tomographic study of the crust under this region, which until now remained largely unexplored at this scale. From cross-correlations extracted from coherent noise we obtained Rayleigh wave group velocity dispersion curves for the period range 5–40 s. These dispersion relations were inverted to produce group velocity maps, and 1-D shear wave velocity profiles at selected points. High group velocities are observed at all periods on the eastern edge of the Kaapvaal and Zimbabwe cratons, in agreement with the findings of previous studies. Further east, a pronounced slow anomaly is observed in central and southern Mozambique, where the rifting between southern Africa and Antarctica created a passive margin in the Mesozoic, and further rifting is currently happening as a result of the southward propagation of the EAR. In this study, we also addressed the question concerning the nature of the crust (continental versus oceanic) in the Mozambique Coastal Plains (MCP), still in debate. Our data do not support previous suggestions that the MCP are floored by oceanic crust since a shallow Moho could not be detected, and we discuss an alternative explanation for its ocean-like magnetic signature. Our velocity maps suggest that the crystalline basement of the Zimbabwe craton may extend further east well into Mozambique underneath the sediment cover, contrary to what is usually assumed, while further south the Kaapval craton passes into slow rifted crust at the Lebombo monocline as expected. The sharp passage from fast crust to slow crust on the northern part of the study area coincides with the seismically active NNE-SSW Urema rift, while further south the Mazenga graben adopts an N-S direction parallel to the eastern limit of the Kaapvaal craton. We conclude that these two extensional structures herald the southward continuation of the EAR, and infer a structural control of the transition between the two types of crust on the ongoing deformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperspectral imaging has become one of the main topics in remote sensing applications, which comprise hundreds of spectral bands at different (almost contiguous) wavelength channels over the same area generating large data volumes comprising several GBs per flight. This high spectral resolution can be used for object detection and for discriminate between different objects based on their spectral characteristics. One of the main problems involved in hyperspectral analysis is the presence of mixed pixels, which arise when the spacial resolution of the sensor is not able to separate spectrally distinct materials. Spectral unmixing is one of the most important task for hyperspectral data exploitation. However, the unmixing algorithms can be computationally very expensive, and even high power consuming, which compromises the use in applications under on-board constraints. In recent years, graphics processing units (GPUs) have evolved into highly parallel and programmable systems. Specifically, several hyperspectral imaging algorithms have shown to be able to benefit from this hardware taking advantage of the extremely high floating-point processing performance, compact size, huge memory bandwidth, and relatively low cost of these units, which make them appealing for onboard data processing. In this paper, we propose a parallel implementation of an augmented Lagragian based method for unsupervised hyperspectral linear unmixing on GPUs using CUDA. The method called simplex identification via split augmented Lagrangian (SISAL) aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The efficient implementation of SISAL method presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shelves surrounding reefless volcanic ocean islands are formed by surf erosion of their slopes during changing sea levels. Posterosional lava flows, if abundant, can cross the coastal cliffs and fill partially or completely the accommodation space left by erosion. In this study, multibeam bathymetry, high-resolution seismic reflection profiles, and sediment samples are used to characterize the morphology of the insular shelves adjacent to Pico Island. The data show offshore fresh lava flow morphologies, as well as an irregular basement beneath shelf sedimentary bodies and reduced shelf width adjacent to older volcanic edifices in Pico. These observations suggest that these shelves have been significantly filled by volcanic progradation and can thus be classified as rejuvenated. Despite the general volcanic infilling of the shelves around Pico, most of their edges are below the depth of the Last Glacial Maximum, revealing that at least parts of the island have subsided after the shelves formed by surf erosion. Prograding lava deltas reached the shelf edge in some areas triggering small slope failures, locally decreasing the shelf width and depth of their edges. These areas can represent a significant risk for the local population; hence, their identification can be useful for hazard assessment and contribute to wiser land use planning. Shelf and subaerial geomorphology, magnetic anomalies and crustal structure data of the two islands were also interpreted to reconstruct the long-term combined onshore and offshore evolution of the Faial-Pico ridge. The subaerial emergence of this ridge is apparently older than previously thought, i.e., before approximate to 850 ka.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mainland Portugal, on the southwestern edge of the European continent, is located directly north of the boundary between the Eurasian and Nubian plates. It lies in a region of slow lithospheric deformation (< 5 mm yr(-1)), which has generated some of the largest earthquakes in Europe, both intraplate (mainland) and interplate (offshore). Some offshore earthquakes are nucleated on old and cold lithospheric mantle, at depths down to 60 km. The seismicity of mainland Portugal and its adjacent offshore has been repeatedly classified as diffuse. In this paper, we analyse the instrumental earthquake catalogue for western Iberia, which covers the period between 1961 and 2013. Between 2010 and 2012, the catalogue was enriched with data from dense broad-band deployments. We show that although the plate boundary south of Portugal is diffuse, in that deformation is accommodated along several distributed faults rather than along one long linear plate boundary, the seismicity itself is not diffuse. Rather, when located using high-quality data, earthquakes collapse into well-defined clusters and lineations. We identify and characterize the most outstanding clusters and lineations of epicentres and correlate them with geophysical and tectonic features (historical seismicity, topography, geologically mapped faults, Moho depth, free-air gravity, magnetic anomalies and geotectonic units). Both onshore and offshore, clusters and lineations of earthquakes are aligned preferentially NNE-SSW and WNW-ESE. Cumulative seismic moment and epicentre density decrease from south to north, with increasing distance from the plate boundary. Only few earthquake lineations coincide with geologically mapped faults. Clusters and lineations that do not match geologically mapped faults may correspond to previously unmapped faults (e.g. blind faults), rheological boundaries or distributed fracturing inside blocks that are more brittle and therefore break more easily than neighbour blocks. The seismicity map of western Iberia presented in this article opens important questions concerning the regional seismotectonics. This work shows that the study of low-magnitude earthquakes using dense seismic deployments is a powerful tool to study lithospheric deformation in slowly deforming regions, such as western Iberia, where high-magnitude earthquakes occur with long recurrence intervals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores - Área de Especialização em Automação e Sistemas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capability to anticipate a contact with another device can greatly improve the performance and user satisfaction not only of mobile social network applications but of any other relying on some form of data harvesting or hoarding. One of the most promising approaches for contact prediction is to extrapolate from past experiences. This paper investigates the recurring contact patterns observed between groups of devices using an 8-year dataset of wireless access logs produced by more than 70000 devices. This effort permitted to model the probabilities of occurrence of a contact at a predefined date between groups of devices using a power law distribution that varies according to neighbourhood size and recurrence period. In the general case, the model can be used by applications that need to disseminate large datasets by groups of devices. As an example, the paper presents and evaluates an algorithm that provides daily contact predictions, based on the history of past pairwise contacts and their duration. Copyright © 2015 ICST.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The localization of magma melting areas at the lithosphere bottom in extensional volcanic domains is poorly understood. Large polygenetic volcanoes of long duration and their associated magma chambers suggest that melting at depth may be focused at specific points within the mantle. To validate the hypothesis that the magma feeding a mafic crust, comes from permanent localized crustal reservoirs, it is necessary to map the fossilized magma flow within the crustal planar intrusions. Using the AMS, we obtain magmatic flow vectors from 34 alkaline basaltic dykes from São Jorge, São Miguel and Santa Maria islands in the Azores Archipelago, a hot-spot related triple junction. The dykes contain titanomagnetite showing a wide spectrum of solid solution ranging from Ti-rich to Ti-poor compositions with vestiges of maghemitization. Most of the dykes exhibit a normal magnetic fabric. The orientation of the magnetic lineation k1 axis is more variable than that of the k3 axis, which is generally well grouped. The dykes of São Jorge and São Miguel show a predominance of subhorizontal magmatic flows. In Santa Maria the deduced flow pattern is less systematic changing from subhorizontal in the southern part of the island to oblique in north. These results suggest that the ascent of magma beneath the islands of Azores is predominantly over localized melting sources and then collected within shallow magma chambers. According to this concept, dykes in the upper levels of the crust propagate laterally away from these magma chambers thus feeding the lava flows observed at the surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper introduces a new method to blindly unmix hyperspectral data, termed dependent component analysis (DECA). This method decomposes a hyperspectral images into a collection of reflectance (or radiance) spectra of the materials present in the scene (endmember signatures) and the corresponding abundance fractions at each pixel. DECA assumes that each pixel is a linear mixture of the endmembers signatures weighted by the correspondent abundance fractions. These abudances are modeled as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. The mixing matrix is inferred by a generalized expectation-maximization (GEM) type algorithm. This method overcomes the limitations of unmixing methods based on Independent Component Analysis (ICA) and on geometrical based approaches. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photo-interpretation of aerial stereopairs of the Sintra region on the approx. 1/32 000 scale together with field work allowed the production of the present Tectonic Map of the Sintra region. It is now possible to separate structures which resulted from two different tectonic events: one, corresponding to the intrusion of the Late Cretaceous Sintra igneous diapir, and the other the Miocene compressive event, the most important tectonic inversion phase of the Lusitanian Basin. The former are present to the south, southeast and east of the intrusion and within the intrusion itself, affecting the peripheral granites and their contacts with the gabbro-syenite core. These structures comprehend: i) faults and conical fractures striking parallel to the massif boundary, which were intruded by dykes, ii) vertical faults and fractures of two conjugate sets, dextral NNW-SSE and sinistral NNE-SSW. These faults are certainly associated with the E-W striking massif's northwards directed thrust and indicate a N-S oriented horizontal maximum compressive stress. The Miocene compressive event reactivated most of the inherited structures as follows. The NNWSSE faults located on the Sintra southern platform were reactivated as dextral strike slip faults and the E-W thrust along the northern boundary of the massif was also reactivated. This thrust propagated to the east. It also enhanced the asymmetry of the rim-syncline, uplifted the massif and reactivated the NNE-SSW faults as sinistral lateral ramps, which also accommodated vertical throw. The present Tectonic Map of Sintra together with the available geophysical data (MOREIRA, 1984, KULLBERG et al., 1991, SILVA & MIRANDA, 1994) allowed reassessment of the models proposed for the emplacement of the Sintra, Sines and Monchique igneous massifs, which intruded during Late Cretaceous times along the deep dextral NNW-SSE oriented strike slip fault (RIBEIRO et al., 1979; TERRINHA, 1998; TERRINHA & KULLBERG, 1998).