987 resultados para Interferon-gamma -- immunology
Resumo:
Apoptosis induced in myeloid leukemic cells by wild-type p53 was suppressed by different cleavage-site directed protease inhibitors, which inhibit interleukin-1 beta-converting enzyme-like, granzyme B and cathepsins B and L proteases. Apoptosis was also suppressed by the serine and cysteine protease inhibitor N-tosyl-L-phenylalanine chloromethylketone (TPCK) [corrected], but not by other serine or cysteine protease inhibitors including N alpha-p-tosyl-L-lysine chloromethylketone (TLCK), E64, pepstatin A, or chymostatin. Protease inhibitors suppressed induction of apoptosis by gamma-irradiation and cycloheximide but not by doxorubicin, vincristine, or withdrawal of interleukin 3 from interleukin 3-dependent 32D non-malignant myeloid cells. Induction of apoptosis in normal thymocytes by gamma-irradiation or dexamethasone was also suppressed by the cleavage-site directed protease inhibitors, but in contrast to the myeloid leukemic cells apoptosis in thymocytes was suppressed by TLCK but not by TPCK. The results indicate that (i) inhibitors of interleukin-1 beta-converting enzyme-like proteases and some other protease inhibitors suppressed induction of apoptosis by wild-type p53 and certain p53-independent pathways of apoptosis; (ii) the protease inhibitors together with the cytokines interleukin 6 and interferon-gamma or the antioxidant butylated hydroxyanisole gave a cooperative protection against apoptosis; (iii) these protease inhibitors did not suppress induction of apoptosis by some cytotoxic agents or by viability-factor withdrawal from 32D cells, whereas these pathways of apoptosis were suppressed by cytokines; (iv) there are cell type differences in the proteases involved in apoptosis; and (v) there are multiple pathways leading to apoptosis that can be selectively induced and suppressed by different agents.
Resumo:
JAK2, a member of the Janus kinase superfamily was found to interact functionally with Raf-1, a central component of the ras/mitogen-activated protein kinase signal transduction pathway. Interferon-gamma and several other cytokines that are known to activate JAK2 kinase were also found to stimulate Raf-1 kinase activity toward MEK-1 in mammalian cells. In the baculovirus coexpression system, Raf-1 was activated by JAK2 in the presence of p21ras. Under these conditions, a ternary complex of p21ras, JAK2, and Raf-1 was observed. In contrast, in the absence of p21ras, coexpression of JAK2 and Raf-1 resulted in an overall decrease in the Raf-1 kinase activity. In addition, JAK2 phosphorylated Raf-1 at sites different from those phosphorylated by pp60v-src. In mammalian cells treated with either erythropoietin or interferon-gamma, a small fraction of Raf-1 coimmunoprecipitated with JAK2 in lysates of cells in which JAK2 was activated as judged by its state of tyrosine phosphorylation. Taken together, these data suggest that JAK2 and p21ras cooperate to activate Raf-1.
Resumo:
Interleukin (IL)-12 has strong antitumor activity in transplantable tumor systems in the mouse. The present study was designed to determine whether tumor induction by 3-methylcholanthrene (3-MC), a carcinogenic hydrocarbon, can be inhibited by IL-12. BALB/cBy mice were injected subcutaneously with 25 micrograms or 100 micrograms of 3-MC and treated with 100 ng, 10 ng, or 1 ng of IL-12 for 5 days a week for 18 weeks, with a schedule of 3 weeks on and 1 week off. In mice injected with 25 micrograms of 3-MC, treatment with 100 ng of IL-12 delayed tumor appearance and reduced tumor incidence. Tumor appearance was also delayed in mice injected with 100 micrograms of 3-MC and treated with 100 ng of IL-12, but the final tumor incidence was the same as in non-IL-12-treated mice. In contrast to the characteristically round, hard, well-circumscribed, and protruding tumor induced by 3-MC, a percentage of tumors induced in IL-12-treated mice had atypical characteristics: flat, soft, and invasive. Atypical tumors had a longer latent period and were more frequently seen in mice injected with 100 micrograms of 3-MC and treated with 100 ng of IL-12. Interferon gamma, IL-10, and tumor necrosis factor could be induced throughout the treatment period by IL-12, indicating that repeated injections of IL-12 do not induce a state of tachyphylaxis. High production of interferon gamma by CD8 T cells and a TH2-->TH1 or TH0 shift in the cytokine secretion profile of CD4 T cells were also seen in the IL-12-treated mice. IL-12 provides a powerful new way to explore the defensive role of the immune system in tumorigenesis.
Resumo:
The idiotype of the Ig expressed by a B-cell malignancy (Id) can serve as a unique tumor-specific antigen and as a model for cancer vaccine development. In murine models of Id vaccination, formulation of syngeneic Id with carrier proteins or adjuvants induces an anti-idiotypic antibody response. However, inducing a potent cell-mediated response to this weak antigen instead would be highly desirable. In the 38C13 lymphoma model, we observed that low doses of free granulocyte/macrophage colony-stimulating factor (GM-CSF) 10,000 units i.p. or locally s.c. daily for 4 days significantly enhanced protective antitumor immunity induced by s.c. Id-keyhole limpet hemocyanin (KLH) immunization. This effect was critically dependent upon effector CD4+ and CD8+ T cells and was not associated with any increased anti-idiotypic antibody production. Lymphocytes from spleens and draining lymph nodes of mice primed with Id-KLH plus GM-CSF, but not with Id-KLH alone, demonstrated significant proliferation to Id in vitro without any biased production of interferon gamma or interleukin 4 protein or mRNA. As a further demonstration of potency, 50% of mice immunized with Id-KLH plus GM-CSF on the same day as challenge with a large s.c. tumor inoculum remained tumor-free at day 80, compared with 17% for Id-KLH alone, when immunization was combined with cyclophosphamide. Taken together, these results demonstrate that GM-CSF can significantly enhance the immunogenicity of a defined self-antigen and that this effect is mediated exclusively by activating the T-cell arm of the immune response.
Resumo:
Prostaglandin E2 (PGE2) is a potent lipid molecule with complex proinflammatory and immunoregulatory properties. PGE2 can shape the immune response by stimulating the production of IgE antibody by B lymphocytes and the synthesis of T-helper type 2 cytokines [e.g., interleukin (IL)-4, IL-10], while inhibiting production of Th1 cytokines (e.g., interferon-gamma, IL-12). It is unknown what type of receptor binds PGE2 and modulates these responses. Recent analyses in nonhematopoietic cells have identified six PGE2 receptors (EP1, EP2, EP3 alpha, EP3 beta, EP3 gamma, and EP4). This investigation examines quiescent B lymphocytes and reports that these cells express mRNA encoding EP1, EP2, EP3 beta, and EP4 receptors. The immunoregulatory functions of each receptor were investigated using small molecule agonists that preferentially bind EP receptor subtypes. Unlike agonists for EP1 and EP3, agonists that bound EP2 or EP2 and EP4 receptors strongly inhibited expression of class II major histocompatibility complex and CD23 and blocked enlargement of mouse B lymphocytes stimulated with IL-4 and/or lipopolysaccharide. PGE2 promotes differentiation and synergistically enhances IL-4 and lipopolysaccharide-driven B-cell immunoglobulin class switching to IgE. Agonists that bound EP2 or EP2 and EP4 receptors also strongly stimulated class switching to IgE. Experiments employing inhibitors of cAMP metabolism demonstrate that the mechanism by which EP2 and EP4 receptors regulate B lymphocyte activity requires elevation of cAMP. In conclusion, these data suggest that antagonists to EP2 and EP4 receptors will be important for diminishing allergic and IgE-mediated asthmatic responses.
Resumo:
Lipophosphoglycan (LPG) glycoconjugates from promastigotes of Leishmania were not able to induce the expression of the cytokine-inducible nitric oxide synthase (iNOS) by the murine macrophage cell line, J774. However, they synergize with interferon gamma to stimulate the macrophages to express high levels of iNOS. This synergistic effect was critically time-dependent. Preincubation of J774 cells with the LPG glycans 4-18 h before stimulation with interferon gamma resulted in a significant reduction in the expression of iNOS mRNA and of NO synthesis, compared with cells preincubated with culture medium alone. The regulatory effect on the induction of iNOS by LPG is located in the LPG phosphoglycan disaccharide backbone. Synthetic fragments of this backbone had a similar regulatory effect on NO synthesis. Further, the production of NO by activated macrophages in the present system was correlated directly with the leishmanicidal capacity of the cells. These data therefore demonstrate that LPG glycoconjugates have a profound effect on the survival of Leishmania parasites through their ability to regulate the expression of iNOS by macrophages.
Resumo:
An important component of cytokine regulation of cell growth and differentiation is rapid transcriptional activation of genes by the JAK-STAT (signal transducer and activator of transcription) signaling pathway. Ligation of cytokine receptors results in tyrosine phosphorylation and activation of receptor-associated Jak protein tyrosine kinases and cytoplasmic STAT transcription factors, which then translocate to the nucleus. We describe the interruption of cytokine triggered JAK-STAT signals by cAMP, the calcium ionophore ionomycin, and granulocyte/macrophage colony-stimulating factor. Jak1 kinase activity, interleukin 6-induced gene activation, Stat3 tyrosine phosphorylation, and DNA-binding were inhibited, as was activation of Jak1 and Stat1 by interferon gamma. The kinetics and requirement for new RNA and protein synthesis for inhibition of interleukin 6 by ionomycin and GM-CSF differed, but both agents increased the association of Jak1 with protein tyrosine phosphatase ID (SH2-containing phosphatase 2). Our results demonstrate that crosstalk with distinct signaling pathways can inhibit JAK-STAT signal transduction, and suggest approaches for modulating cytokine activity during immune responses and inflammatory processes.
Resumo:
Although the production of NO within rodent phagocytes is well-characterized, its production and function within human phagocytes are less clear. We show here that neutrophils within human buffy coat preparations stimulated with a mixture of interleukin 1, tumor necrosis factor alpha, and interferon gamma contain inducible NO synthase mRNA and protein, one of the enzymes responsible for NO production. The protein colocalizes with myeloperoxidase within neutrophil primary granules. Using an inhibitor of NO synthase, L-N-monomethyl arginine, we show that activity of this enzyme is required for the formation of nitrotyrosine around phagocytosed bacteria, most likely through the intermediate production of peroxynitrite, a reaction product of NO and superoxide anions.
Resumo:
The p40 subunit of interleukin 12 (IL-12p40) has been known to act as an IL-12 antagonist in vitro. We here describe the immunosuppressive effect of IL-12p40 in vivo. A murine myoblast cell line, C2C12, was transduced with retro-virus vectors carrying the lacZ gene as a marker and the IL-12p40 gene. IL-12p40 secreted from the transfectant inhibited the IL-12-induced interferon gamma (IFN-gamma) production by splenocytes in vitro. Survival of C2C12 transplanted into allogeneic recipients was substantially prolonged when transduced with IL-12p40. Cytokine (IL-2 and IFN-gamma) production and cytotoxic T lymphocyte induction against allogeneic C2C12 were impaired in the recipients transplanted with the IL-12p40 transfectant. Delayed-type hypersensitivity response against C2C12 was also diminished in the IL-12p40 recipients. Furthermore, serum antibodies against beta-galactosidase of the T-helper 1-dependent isotypes (IgG2 and IgG3) were decreased in the IL-12p40 recipients. These results indicate that locally produced IL-12p40 exerts a potent immunosuppressive effect on T-helper 1-mediated immune responses that lead to allograft rejection. Therefore, IL-12p40 gene transduction would be useful for preventing the rejection of allografts and genetically modified own cells that are transduced with potentially antigenic molecules in gene therapy.
Resumo:
Proteasomes are the multi-subunit protease thought to play a key role in the generation of peptides presented by major histocompatibility complex (MHC) class I molecules. When cells are stimulated with interferon gamma, two MHC-encoded subunits, low molecular mass polypeptide (LMP) 2 and LMP7, and the MECL1 subunit encoded outside the MHC are incorporated into the proteasomal complex, presumably by displacing the housekeeping subunits designated Y, X, and Z, respectively. These changes in the subunit composition appear to facilitate class I-mediated antigen presentation, presumably by altering the cleavage specificities of the proteasome. Here we show that the mouse gene encoding the Z subunit (Psmb7) maps to the paracentromeric region of chromosome 2. Inspection of the mouse loci adjacent to the Psmb7 locus provides evidence that the paracentromeric region of chromosome 2 and the MHC region on chromosome 17 most likely arose as a result of a duplication that took place at an early stage of vertebrate evolution. The traces of this duplication are also evident in the homologous human chromosome regions (6p21.3 and 9q33-q34). These observations have implications in understanding the genomic organization of the present-day MHC and offer insights into the origin of the MHC.
Resumo:
Apoptosis induced by wild-type p53 or cytotoxic compounds in myeloid leukemic cells can be inhibited by the cytokines interleukin 6, interleukin 3, granulocyte-macrophage colony-stimulating factor, and interferon gamma and by antioxidants. The antioxidants and cytokines showed a cooperative protective effect against induction of apoptosis. Cells with a higher intrinsic level of peroxide production showed a higher sensitivity to induction of apoptosis and required a higher cytokine concentration to inhibit apoptosis. Decreasing the intrinsic oxidative stress in cells by antioxidants thus inhibited apoptosis, whereas increasing this intrinsic stress by adding H2O2 enhanced apoptosis. Induction of apoptosis by wild-type p53 was not preceded by increased peroxide production or lipid peroxidation and the protective effect of cytokines was not associated with a decrease in these properties. The results indicate that the intrinsic degree of oxidative stress can regulate cell susceptibility to wild-type p53-dependent and p53-independent induction of apoptosis and the ability of cytokines to protect cells against apoptosis.
Resumo:
The protein known as macrophage migration inhibitory factor (MIF) was one of the first cytokines to be discovered and was described 30 years ago to be a T-cell-derived factor that inhibited the random migration of macrophages in vitro. A much broader role for MIF has emerged recently as a result of studies that have demonstrated it to be released from the anterior pituitary gland in vivo. MIF also is the first protein that has been identified to be secreted from monocytes/macrophages upon glucocorticoid stimulation. Once released, MIF acts to "override" or counter-regulate the suppressive effects of glucocorticoids on macrophage cytokine production. We report herein that MIF plays an important regulatory role in the activation of T cells induced by mitogenic or antigenic stimuli. Activated T cells produce MIF and neutralizing anti-MIF antibodies inhibit T-cell proliferation and interleukin 2 production in vitro, and suppress antigen-driven T-cell activation and antibody production in vivo. T cells also release MIF in response to glucocorticoid stimulation and MIF acts to override glucocorticoid inhibition of T-cell proliferation and interleukin 2 and interferon gamma production. These studies indicate that MIF acts in concert with glucocorticoids to control T-cell activation and assign a previously unsuspected but critical role for MIF in antigen-specific immune responses.
Resumo:
Oral administration of autoantigens can prevent and partially suppress autoimmune diseases in a number of experimental models, Depending on the dose of antigen fed, this approach appears to involve distinct yet reversible and short-lasting mechanisms (anergy/deletion and suppression) and usually requires repeated feeding of large (suppression) to massive (anergy/deletion) amounts of autoantigens to be effective. Most importantly, this approach is relatively less effective in animals already systemically sensitized to the fed antigen, such as in animals already harboring autoreactive T cells and, thus, presumably also in humans suffering from an autoimmune disorder. We have previously shown that feeding a single dose of minute amounts of antigens conjugated to cholera toxin B subunit (CTB) can effectively suppress delayed-type hypersensitivity reactions in systemically immune animals. We now report that feeding small amounts of myelin basic protein (MBP) conjugated to CTB either before or after disease induction protected rats from experimental autoimmune encephalomyelitis. Such treatment was as effective in suppressing interleukin 2 production and proliferative responses of lymph node cells to MBP as treatment involving repeated feeding with much larger (50- to 100-fold) doses of free MBP. Different from the latter treatment, which led to decreased production of interferon-gamma in lymph nodes, low-dose oral CTB-MBP treatment was associated with increased interferon-gamma production. Most importantly, low-dose oral CTB-MBP treatment greatly reduced the level of leukocyte infiltration into spinal cord tissue compared with treatment with repeated feeding of large doses of MBP. These results suggest that the protection from experimental autoimmune encephalomyelitis achieved by feeding CTB-conjugated myelin autoantigen involves immunomodulating mechanisms that are distinct from those implicated by conventional protocols of oral tolerance induction.
Resumo:
Hepatitis B virus (HBV) infection is thought to be controlled by virus-specific cytotoxic T lymphocytes (CTL). We have recently shown that HBV-specific CTL can abolish HBV replication noncytopathically in the liver of transgenic mice by secreting tumor necrosis factor alpha (TNF-alpha) and interferon gamma (IFN-gamma) after antigen recognition. We now demonstrate that hepatocellular HBV replication is also abolished noncytopathically during lymphocytic choriomeningitis virus (LCMV) infection, and we show that this process is mediated by TNF-alpha and IFN-alpha/beta produced by LCMV-infected hepatic macrophages. These results confirm the ability of these inflammatory cytokines to abolish HBV replication; they elucidate the mechanism likely to be responsible for clearance of HBV in chronically infected patients who become superinfected by other hepatotropic viruses; they suggest that pharmacological activation of intrahepatic macrophages may have therapeutic value in chronic HBV infection; and they raise the possibility that conceptually similar events may be operative in other viral infections as well.
Resumo:
Chemical modification of proteins is a common theme in their regulation. Nitrosylation of protein sulfhydryl groups has been shown to confer nitric oxide (NO)-like biological activities and to regulate protein functions. Several other nucleophilic side chains -- including those with hydroxyls, amines, and aromatic carbons -- are also potentially susceptible to nitrosative attack. Therefore, we examined the reactivity and functional consequences of nitros(yl)ation at a variety of nucleophilic centers in biological molecules. Chemical analysis and spectroscopic studies show that nitrosation reactions are sustained at sulfur, oxygen, nitrogen, and aromatic carbon centers, with thiols being the most reactive functionality. The exemplary protein, BSA, in the presence of a 1-, 20-, 100-, or 200-fold excess of nitrosating equivalents removes 0.6 +/- 0.2, 3.2 +/- 0.4, 18 +/- 4, and 38 +/- 10, respectively, moles of NO equivalents per mole of BSA from the reaction medium; spectroscopic evidence shows the proportionate formation of a polynitrosylated protein. Analogous reaction of tissue-type plasminogen activator yields comparable NO protein stoichiometries. Disruption of protein tertiary structure by reduction results in the preferential nitrosylation of up to 20 thus-exposed thiol groups. The polynitrosylated proteins exhibit antiplatelet and vasodilator activity that increases with the degree of nitrosation, but S-nitroso derivatives show the greatest NO-related bioactivity. Studies on enzymatic activity of tissue-type plasminogen activator show that polynitrosylation may lead to attenuated function. Moreover, the reactivity of tyrosine residues in proteins raises the possibility that NO could disrupt processes regulated by phosphorylation. Polynitrosylated proteins were found in reaction mixtures containing interferon-gamma/lipopolysaccharide-stimulated macrophages and in tracheal secretions of subjects treated with NO gas, thus suggesting their physiological relevance. In conclusion, multiple sites on proteins are susceptible to attack by nitrogen oxides. Thiol groups are preferentially modified, supporting the notion that S-nitrosylation can serve to regulate protein function. Nitrosation reactions sustained at additional nucleophilic centers may have (patho)physiological significance and suggest a facile route by which abundant NO bioactivity can be delivered to a biological system, with specificity dictated by protein substrate.