930 resultados para Inside debt
Resumo:
CATR facilities are attractive antenna measurement facilities. Main reasons which contribute to this fact lie on its inherent reduced volume, on-the-fly measurements and the extension of both to a wide range of frequencies. However, these features rely on the assumption that the field collimation scheme is able to generate a plane wave distribution (quiet zone) where the AUT is to be placed and operated in RX mode. Unfortunately, electromagnetic theory states that this field distribution is not possible to be generated by a finite size scatterer operated as the collimator of a nonzero wavelength time-harmonic propagating field. This is the background of this paper, where two well-known electromagnetic field collimators will be discussed: the serrated edge reflector and the blended rolled edge reflector. To reach this purpose, electromagnetic hybrid analysis techniques developed at Technical University of Madrid will be applied.
Resumo:
There is no unanimous consensus yet on the propagation mechanism before the break point inside tunnels. Some deem that the propagation mechanism follows the free space model, others argue that it should be described by the multimode waveguide model. Firstly, this paper analyzes the propagation loss in two mechanisms. Then, by conjunctively using the propagation theory and the three-dimensional solid geometry, a generic analytical model for the boundary between the free space mechanism and the multi-mode waveguide mechanism inside tunnels has been presented. Three measurement campaigns validate the model in different tunnels at different frequencies. Furthermore, the condition of the validity of the free space model used in tunnel environment has been discussed in some specific situations. Finally, through mathematical derivation, the seemingly conflicting viewpoints on the free space mechanism and the multi-mode waveguide mechanism have been unified in some specific situations by the presented generic model. The results in this paper can be helpful to gain deeper insight and better understanding of the propagation mechanism inside tunnels
Resumo:
El audio multicanal ha avanzado a pasos agigantados en los últimos años, y no solo en las técnicas de reproducción, sino que en las de capitación también. Por eso en este proyecto se encuentran ambas cosas: un array microfónico, EigenMike32 de MH Acoustics, y un sistema de reproducción con tecnología Wave Field Synthesis, instalado Iosono en la Jade Höchscule Oldenburg. Para enlazar estos dos puntos de la cadena de audio se proponen dos tipos distintos de codificación: la reproducción de la toma horizontal del EigenMike32; y el 3er orden de Ambisonics (High Order Ambisonics, HOA), una técnica de codificación basada en Armónicos Esféricos mediante la cual se simula el campo acústico en vez de simular las distintas fuentes. Ambas se desarrollaron en el entorno Matlab y apoyadas por la colección de scripts de Isophonics llamada Spatial Audio Matlab Toolbox. Para probar éstas se llevaron a cabo una serie de test en los que se las comparó con las grabaciones realizadas a la vez con un Dummy Head, a la que se supone el método más aproximado a nuestro modo de escucha. Estas pruebas incluían otras grabaciones hechas con un Doble MS de Schoeps que se explican en el proyecto “Sally”. La forma de realizar éstas fue, una batería de 4 audios repetida 4 veces para cada una de las situaciones garbadas (una conversación, una clase, una calle y un comedor universitario). Los resultados fueron inesperados, ya que la codificación del tercer orden de HOA quedo por debajo de la valoración Buena, posiblemente debido a la introducción de material hecho para un array tridimensional dentro de uno de 2 dimensiones. Por el otro lado, la codificación que consistía en extraer los micrófonos del plano horizontal se mantuvo en el nivel de Buena en todas las situaciones. Se concluye que HOA debe seguir siendo probado con mayores conocimientos sobre Armónicos Esféricos; mientras que el otro codificador, mucho más sencillo, puede ser usado para situaciones sin mucha complejidad en cuanto a espacialidad. In the last years the multichannel audio has increased in leaps and bounds and not only in the playback techniques, but also in the recording ones. That is the reason of both things being in this project: a microphone array, EigenMike32 from MH Acoustics; and a playback system with Wave Field Synthesis technology, installed by Iosono in Jade Höchscule Oldenburg. To link these two points of the audio chain, 2 different kinds of codification are proposed: the reproduction of the EigenMike32´s horizontal take, and the Ambisonics´ third order (High Order Ambisonics, HOA), a codification technique based in Spherical Harmonics through which the acoustic field is simulated instead of the different sound sources. Both have been developed inside Matlab´s environment and supported by the Isophonics´ scripts collection called Spatial Audio Matlab Toolbox. To test these, a serial of tests were made in which they were compared with recordings made at the time by a Dummy Head, which is supposed to be the closest method to our hearing way. These tests included other recording and codifications made by a Double MS (DMS) from Schoeps which are explained in the project named “3D audio rendering through Ambisonics techniques: from multi-microphone recordings (DMS Schoeps) to a WFS system, through Matlab”. The way to perform the tests was, a collection made of 4 audios repeated 4 times for each recorded situation (a chat, a class, a street and college canteen or Mensa). The results were unexpected, because the HOA´s third order stood under the Well valuation, possibly caused by introducing material made for a tridimensional array inside one made only by 2 dimensions. On the other hand, the codification that consisted of extracting the horizontal plane microphones kept the Well valuation in all the situations. It is concluded that HOA should keep being tested with larger knowledge about Spherical Harmonics; while the other coder, quite simpler, can be used for situations without a lot of complexity with regards to spatiality.
Resumo:
Structural Health Monitoring (SHM) requires integrated "all in one" electronic devices capable of performing analysis of structural integrity and on-board damage detection in aircraft?s structures. PAMELA III (Phased Array Monitoring for Enhanced Life Assessment, version III) SHM embedded system is an example of this device type. This equipment is capable of generating excitation signals to be applied to an array of integrated piezoelectric Phased Array (PhA) transducers stuck to aircraft structure, acquiring the response signals, and carrying out the advanced signal processing to obtain SHM maps. PAMELA III is connected with a host computer in order to receive the configuration parameters and sending the obtained SHM maps, alarms and so on. This host can communicate with PAMELA III through an Ethernet interface. To avoid the use of wires where necessary, it is possible to add Wi-Fi capabilities to PAMELA III, connecting a Wi-Fi node working as a bridge, and to establish a wireless communication between PAMELA III and the host. However, in a real aircraft scenario, several PAMELA III devices must work together inside closed structures. In this situation, it is not possible for all PAMELA III devices to establish a wireless communication directly with the host, due to the signal attenuation caused by the different obstacles of the aircraft structure. To provide communication among all PAMELA III devices and the host, a wireless mesh network (WMN) system has been implemented inside a closed aluminum wingbox. In a WMN, as long as a node is connected to at least one other node, it will have full connectivity to the entire network because each mesh node forwards packets to other nodes in the network as required. Mesh protocols automatically determine the best route through the network and can dynamically reconfigure the network if a link drops out. The advantages and disadvantages on the use of a wireless mesh network system inside closed aerospace structures are discussed.
Resumo:
The solar irradiation that a crop receives is directly related to the physical and biological processes that affect the crop. However, the assessment of solar irradiation poses certain problems when it must be measured through fruit inside the canopy of a tree. In such cases, it is necessary to check many test points, which usually requires an expensive data acquisition system. The use of conventional irradiance sensors increases the cost of the experiment, making them unsuitable. Nevertheless, it is still possible to perform a precise irradiance test with a reduced price by using low-cost sensors based on the photovoltaic effect. The aim of this work is to develop a low-cost sensor that permits the measurement of the irradiance inside the tree canopy. Two different technologies of solar cells were analyzed for their use in the measurement of solar irradiation levels inside tree canopies. Two data acquisition system setups were also tested and compared. Experiments were performed in Ademuz (Valencia, Spain) in September 2011 and September 2012 to check the validity of low-cost sensors based on solar cells and their associated data acquisition systems. The observed difference between solar irradiation at high and low positions was of 18.5% ± 2.58% at a 95% confidence interval. Large differences were observed between the operations of the two tested sensors. In the case of a-Si cells based mini-modules, an effect of partial shadowing was detected due to the larger size of the devices, the use of individual c-Si cells is recommended over a-Si cells based mini-modules.
Resumo:
In the last few years, technical debt has been used as a useful means for making the intrinsic cost of the internal software quality weaknesses visible. This visibility is made possible by quantifying this cost. Specifically, technical debt is expressed in terms of two main concepts: principal and interest. The principal is the cost of eliminating or reducing the impact of a, so called, technical debt item in a software system; whereas the interest is the recurring cost, over a time period, of not eliminating a technical debt item. Previous works about technical debt are mainly focused on estimating principal and interest, and on performing a cost-benefit analysis. This cost-benefit analysis allows one to determine if to remove technical debt is profitable and to prioritize which items incurring in technical debt should be fixed first. Nevertheless, for these previous works technical debt is flat along the time. However the introduction of new factors to estimate technical debt may produce non flat models that allow us to produce more accurate predictions. These factors should be used to estimate principal and interest, and to perform cost-benefit analysis related to technical debt. In this paper, we take a step forward introducing the uncertainty about the interest, and the time frame factors so that it becomes possible to depict a number of possible future scenarios. Estimations obtained without considering the possible evolution of the interest over time may be less accurate as they consider simplistic scenarios without changes.
Resumo:
The third Training School of the Action took place in Vitoria-Gasteiz (Basque country, Spain) from 24th to 26th September 2014. Vitoria-Gateiz has experimented an important urban outgrowth in the last decade, mainly through the planning and development of two new neighborhoods, Zabalgana and Salburúa, situated at the eastern and western border of the city, by the Greenbelt. These new development are well-equipped and designed according to sustainability principles. Nevertheless, among the main problems they present is their over-dimensioned public space, which creates some areas lacking enough density and mix of uses. On the other hand it is very expensive for the municipality to maintain these public space with the high Vitorian urban standards for public space. The proposed solution for this problem is a strategy of "re-densification" through the insertion of new uses The debate has arisen about which are the most adequate uses to insert in order to get an increasing of urban vitality, specially considering that housing has reached its peak and that Vitoria-Gasteiz is well served with social and sport amenities. The main goal of the TS was to offer an opportunity for the reflection about how urban agriculture might be an optimal alternative for the re-qualifying of this over-dimensioned public space in the new neighbourhoods, especially considering it synergic potential as a tool for production, leisure and landscaping, including the possibility of energy crops within the limits of urban space. Continuity with rural and natural surrounding area through alternatives for urban fringe at the small scale is a relevant issue to be considered as well within the reflection. Taking Zabalgana neighbourhood as a practical field for experiment, the Training School is conceived as a practical and intensive design charrette to be held during a whole day after two days of local knowledge-deepening through field visits and presentations.
Resumo:
PAMELA (Phased Array Monitoring for Enhanced Life Assessment) SHMTM System is an integrated embedded ultrasonic guided waves based system consisting of several electronic devices and one system manager controller. The data collected by all PAMELA devices in the system must be transmitted to the controller, who will be responsible for carrying out the advanced signal processing to obtain SHM maps. PAMELA devices consist of hardware based on a Virtex 5 FPGA with a PowerPC 440 running an embedded Linux distribution. Therefore, PAMELA devices, in addition to the capability of performing tests and transmitting the collected data to the controller, have the capability of perform local data processing or pre-processing (reduction, normalization, pattern recognition, feature extraction, etc.). Local data processing decreases the data traffic over the network and allows CPU load of the external computer to be reduced. Even it is possible that PAMELA devices are running autonomously performing scheduled tests, and only communicates with the controller in case of detection of structural damages or when programmed. Each PAMELA device integrates a software management application (SMA) that allows to the developer downloading his own algorithm code and adding the new data processing algorithm to the device. The development of the SMA is done in a virtual machine with an Ubuntu Linux distribution including all necessary software tools to perform the entire cycle of development. Eclipse IDE (Integrated Development Environment) is used to develop the SMA project and to write the code of each data processing algorithm. This paper presents the developed software architecture and describes the necessary steps to add new data processing algorithms to SMA in order to increase the processing capabilities of PAMELA devices.An example of basic damage index estimation using delay and sum algorithm is provided.
Resumo:
Datos de publicación tomados de la obra a la que pertenece