935 resultados para Input-output model
Resumo:
ABSTRACT The traditional method of net present value (NPV) to analyze the economic profitability of an investment (based on a deterministic approach) does not adequately represent the implicit risk associated with different but correlated input variables. Using a stochastic simulation approach for evaluating the profitability of blueberry (Vaccinium corymbosum L.) production in Chile, the objective of this study is to illustrate the complexity of including risk in economic feasibility analysis when the project is subject to several but correlated risks. The results of the simulation analysis suggest that the non-inclusion of the intratemporal correlation between input variables underestimate the risk associated with investment decisions. The methodological contribution of this study illustrates the complexity of the interrelationships between uncertain variables and their impact on the convenience of carrying out this type of business in Chile. The steps for the analysis of economic viability were: First, adjusted probability distributions for stochastic input variables (SIV) were simulated and validated. Second, the random values of SIV were used to calculate random values of variables such as production, revenues, costs, depreciation, taxes and net cash flows. Third, the complete stochastic model was simulated with 10,000 iterations using random values for SIV. This result gave information to estimate the probability distributions of the stochastic output variables (SOV) such as the net present value, internal rate of return, value at risk, average cost of production, contribution margin and return on capital. Fourth, the complete stochastic model simulation results were used to analyze alternative scenarios and provide the results to decision makers in the form of probabilities, probability distributions, and for the SOV probabilistic forecasts. The main conclusion shown that this project is a profitable alternative investment in fruit trees in Chile.
Resumo:
For an accurate use of pesticide leaching models it is necessary to assess the sensitivity of input parameters. The aim of this work was to carry out sensitivity analysis of the pesticide leaching model PEARL for contrasting soil types of Dourados river watershed in the state of Mato Grosso do Sul, Brazil. Sensitivity analysis was done by carrying out many simulations with different input parameters and calculating their influence on the output values. The approach used was called one-at-a-time sensitivity analysis, which consists in varying independently input parameters one at a time and keeping all others constant with the standard scenario. Sensitivity analysis was automated using SESAN tool that was linked to the PEARL model. Results have shown that only soil characteristics influenced the simulated water flux resulting in none variation of this variable for scenarios with different pesticides and same soil. All input parameters that showed the greatest sensitivity with regard to leached pesticide are related to soil and pesticide properties. Sensitivity of all input parameters was scenario dependent, confirming the need of using more than one standard scenario for sensitivity analysis of pesticide leaching models.
Resumo:
The objective of this Master’s thesis is to develop a model which estimates net working capital (NWC) monthly in a year period. The study is conducted by a constructive research which uses a case study. The estimation model is designed in the need of one case company which operates in project business. Net working capital components should be linked together by an automatic model and estimated individually, including advanced components of NWC for example POC receivables. Net working capital estimation model of this study contains three parts: output template, input template and calculation model. The output template gets estimate values automatically from the input template and the calculation model. Into the input template estimate values of more stable NWC components are inputted manually. The calculate model gets estimate values for major affecting components automatically from the systems of a company by using a historical data and made plans. As a precondition for the functionality of the estimation calculation is that sales are estimated in one year period because the sales are linked to all NWC components.
Resumo:
Rice is the most extensively cultivated crop in the world, particularly concentrated in Asia and the Far East. Asian countries together make up for as much as 91.80 per cent of the world production of rice in 1986. The main objective of the present study is to analyse the rice economy of Kerala over time and space at the State, district and taluk level. The thesis analyses the trends in area, yield and total production of rice during the three seasons in the state, districts and taluks and studies the trends in input and output prices of rice and coconut in the state, districts and taluks. The researcher estimates the impact of input and output prices on area, yield and total output of rice in the state, districts and selected taluks and examines the conversion of paddy field into coconut garden and rubber plantation.
Resumo:
Methods are developed for predicting vibration response characteristics of systems which change configuration during operation. A cartesian robot, an example of such a position-dependent system, served as a test case for these methods and was studied in detail. The chosen system model was formulated using the technique of Component Mode Synthesis (CMS). The model assumes that he system is slowly varying, and connects the carriages to each other and to the robot structure at the slowly varying connection points. The modal data required for each component is obtained experimentally in order to get a realistic model. The analysis results in prediction of vibrations that are produced by the inertia forces as well as gravity and friction forces which arise when the robot carriages move with some prescribed motion. Computer simulations and experimental determinations are conducted in order to calculate the vibrations at the robot end-effector. Comparisons are shown to validate the model in two ways: for fixed configuration the mode shapes and natural frequencies are examined, and then for changing configuration the residual vibration at the end of the mode is evaluated. A preliminary study was done on a geometrically nonlinear system which also has position-dependency. The system consisted of a flexible four-bar linkage with elastic input and output shafts. The behavior of the rocker-beam is analyzed for different boundary conditions to show how some limiting cases are obtained. A dimensional analysis leads to an evaluation of the consequences of dynamic similarity on the resulting vibration.
Resumo:
This project is a Web Geographic Information System built on an Open Source geographic structure like MapServer (Minnesota University) and PostgreSQL/PostGIS (object relational database management system). The study case is a web site for expeditions in a specific Brazilian region
Resumo:
This research studies from an internal view based on the Competency-Based Perspective (CBP), key organizational competencies developed for small new business. CBP is chosen in an attempt to explain the differences characterizing the closed companies from the consolidated ones. The main contribution of this paper is the definition of a set of key organizational competencies for new ventures from services and low technology based sectors. Using the classification proposed by [1] and a review of the entrepreneurship literature, the main competencies were defined and classified as: managerial, input-based, transformation-based, and output-based competencies. The proposed model for evaluating new ventures organizational competence is tested by means of Structural Equation
Resumo:
In this paper we estimate a Translog output distance function for a balanced panel of state level data for the Australian dairy processing sector. We estimate a fixed effects specification employing Bayesian methods, with and without the imposition of monotonicity and curvature restrictions. Our results indicate that Tasmania and Victoria are the most technically efficient states with New South Wales being the least efficient. The imposition of theoretical restrictions marginally affects the results especially with respect to estimates of technical change and industry deregulation. Importantly, our bias estimates show changes in both input use and output mix that result from deregulation. Specifically, we find that deregulation has positively biased the production of butter, cheese and powders.
Resumo:
To improve the welfare of the rural poor and keep them in the countryside, the government of Botswana has been spending 40% of the value of agricultural GDP on agricultural support services. But can investment make smallholder agriculture prosperous in such adverse conditions? This paper derives an answer by applying a two-output six-input stochastic translog distance function, with inefficiency effects and biased technical change to panel data for the 18 districts and the commercial agricultural sector, from 1979 to 1996 This model demonstrates that herds are the most important input, followed by draft power. land and seeds. Multilateral indices for technical change, technical efficiency and total factor productivity (TFP) show that the technology level of the commercial agricultural sector is more than six times that of traditional agriculture and that the gap has been increasing, due to technological regression in traditional agriculture and modest progress in commercial agriculture. Since the levels of efficiency are similar, the same patient is repeated by the TFP indices. This result highlights the policy dilemma of the trade-off between efficiency and equity objectives.
Resumo:
Motivation: There is a frequent need to apply a large range of local or remote prediction and annotation tools to one or more sequences. We have created a tool able to dispatch one or more sequences to assorted services by defining a consistent XML format for data and annotations. Results: By analyzing annotation tools, we have determined that annotations can be described using one or more of the six forms of data: numeric or textual annotation of residues, domains (residue ranges) or whole sequences. With this in mind, XML DTDs have been designed to store the input and output of any server. Plug-in wrappers to a number of services have been written which are called from a master script. The resulting APATML is then formatted for display in HTML. Alternatively further tools may be written to perform post-analysis.
Resumo:
In immediate recall tasks, visual recency is substantially enhanced when output interference is low (Cowan, Saults, Elliott, & Moreno, 2002; Craik, 1969) whereas auditory recency remains high even under conditions of high output interference. Ibis auditory advantage has been interpreted in terms of auditory resistance to output interference (e.g., Neath & Surprenant, 2003). In this study the auditory-visual difference at low output interference re-emerged when ceiling effects were accounted for, but only with spoken output. With written responding the auditory advantage remained significantly larger with high than with low output interference. These new data suggest that both superior auditory encoding and modality-specific output interference contribute to the classic auditory-visual modality effect.
Resumo:
A modified radial basis function (RBF) neural network and its identification algorithm based on observational data with heterogeneous noise are introduced. The transformed system output of Box-Cox is represented by the RBF neural network. To identify the model from observational data, the singular value decomposition of the full regression matrix consisting of basis functions formed by system input data is initially carried out and a new fast identification method is then developed using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator (MLE) for a model base spanned by the largest eigenvectors. Finally, the Box-Cox transformation-based RBF neural network, with good generalisation and sparsity, is identified based on the derived optimal Box-Cox transformation and an orthogonal forward regression algorithm using a pseudo-PRESS statistic to select a sparse RBF model with good generalisation. The proposed algorithm and its efficacy are demonstrated with numerical examples.