976 resultados para Infrared lasers
Resumo:
Precursor glass and glass-ceramics with molar composition 2Na2O·1CaO·3SiO2 are studied by infrared, conventional, and microprobe Raman techniques. The Gaussian deconvoluted Raman spectrum of the glass presents bands at 625 and 660 cm-1, attributed to bending vibrations of Si-O-Si bonds, and at 860, 920, 975, and 1030 cm-1, attributed to symmetric stretching vibrations of SiO4 tetrahedra with 4, 3, 2, and 1 nonbridging oxygens, respectively. The Raman microprobe spectrum of a highly crystallized sample presents two narrow and intense bands at about 590 and 980 cm-1, associated with vibrations of SiO4 tetrahedra with two nonbridging oxygens, in agreement with the predicted chain-like structure of crystalline metasilicates. Scanning electron microscopy shows that the crystals distributed in partially crystallized samples have a spherical shape, built up by radially oriented needle-like single crystals. The Raman microprobe spectra of these spherulites show that they still contain residual amorphous material. A comparison of Raman and infrared spectra of amorphous and highly crystallized samples is presented.
Resumo:
We have used Fourier Transform spectral data on the C-O stretching mode of (CD3OD)-C-13 in order to perform a vibro-rotational analysis for this molecule. We have estimated a few molecular parameters of the ground and C-O stretching vibrational modes. Based on these parameters, and by using the Kwan-Dennison model, we propose assignments for a number of far-infrared laser transitions of (CD3OD)-C-13.
Resumo:
Darunavir, a protease inhibitor used in the treatment of HIV infection, presents few methods for its determination in pharmaceuticals. Infrared (IR) spectroscopy offers the possibility of obtaining spectra relatively quickly, providing interesting information, analytically, qualitatively or quantitatively. Capillary electrophoresis (CE) performs separations of high efficiency in shorter time with reagents and samples in small quantity. These two methods are cost-benefitted when we evaluate the green level and the cost of analysis. Faster and cheaper methods without generating organic waste by IR and CE for the quantification of darunavir were developed and validated, focusing socioeconomic impact of analytical decisions. If the cost of acquisition, maintenance, production, analysis and conditioning of drugs and pharmaceuticals is high, consequently the price of this product in the market will be higher and it cannot be accessible to the patient. Treatment failure not only affects the quality of life of patients, but also contributes significantly to the economic burden of the health system. In this context there is a tool called Analysis of the Life Cycle, which comes to make us think in a multidimensional way focusing the whole, the parts and especially the interaction among the parts of a system.
Resumo:
This paper describes the importance of an innovative analytical technique for drugs and pharmaceuticals quantification, using Fouriertransform infrared (FTIR) transmission spectroscopy. This method does not use organic solvents, which is one great advantage over the most common analytical methods. This fact contributes to minimize the generation of organic solvent waste by the industry and thereby reduces the impact of its activities on the environment. The method involved absorbance measurements of the band corresponding to one of the chosen group in the molecule. Obviously, the method should be validated according to ICH guidelines, showing linearity, precision, accuracy and robustness, over a concentration range, using small amounts to prepare the analyte. The validated method is able to quantify drugs and pharmaceuticals and can be used as an environmentally friendly alternative for the routine analysis in pharmaceutical industry quality control.
Resumo:
Darunavir (DRV) is a protease inhibitor used in the treatment of HIV infection, which constitutes a keystone in the therapy of patients infected with this virus. There is no monograph described in official compendia. The literature provides few methods of analysis for the determination of DRV in pharmaceuticals which include TLC, IR, UPLC, HPLC, HPLC-MS, HPLC-MS/MS, but there are no reports of the use of capillary electrophoresis (CE) for the determination of this drug. Thus, this research proposed the development and validation of a CE method for the determination of DRV in tablets. The method was completely validated according to the International Conference on Harmonization guidelines, showing linearity, selectivity, precision, accuracy and robustness. The migration was achieved in less than 1 minute using fused-silica uncoated capillary with an id of 50 μm and total length of 21 cm and voltage of +20 kV. The sample injection was performed in the hydrodynamic mode. The method was linear over the concentration range of 50-200 μg mL-1 with correlation coefficient 0.9998 and limits of detection and quantification of 7.29 and 22.09 μg mL-1, respectively. The drug was subjected to acid, base, oxidation and photolysis degradation. Degradation products were found interfering with the assay of DRV, therefore the method can be regarded as stability indicating. The validated method is useful and appropriate for the routine quality control of DRV in tablets.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Experimental and numerical study of heat transfer in hot machined workpiece using infrared radiation
Resumo:
One of the greatest problems found in machining is related to the cutting tool wear. A way for increasing the tool life points out to the development of materials more resistant to wear, such as PCBN inserts. However, the unit cost of these tools is considerable high, around 10 to 20 times compared to coated carbide insert, besides its better performance occurs in high speeds requiring modern machine tools. Another way, less studied is the workpiece heating in order to diminish the shear stress material and thus reduce the machining forces allowing an increase of tool life. For understanding the heat transfer influences by conduction in this machining process, a mathematical model was developed to allow a simplified numerical simulation, using the finite element method, in order to determine the temperature profiles inside the workpiece.
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
This work reports on the infrared-to-visible CW frequency upconversion from planar waveguides based on Er3+-Yb3+-doped 100-xSiO(2)-xTa(2)O(5) obtained by a sol-gel process and deposited onto a SiO2-Si substrate by dip-coating. Surface morphology and optical parameters of the planar waveguides were analyzed by atomic force microscopy and the m-line technique. The influence of the composition on the electronic properties of the glass-ceramic films was followed by the band gap ranging from 4.35 to 4.51 eV upon modification of the Ta2O5 content. Intense green and red emissions were detected from the upconversion process for all the samples after excitation at 980 nm. The relative intensities of the emission bands around 550 nm and 665 nm, assigned to the H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2) transitions, depended on the tantalum oxide content and the power of the laser source at 980 nm. The upconversion dynamics were investigated as a function of the Ta2O5 content and the number of photons involved in each emission process. Based on the upconversion emission spectra and 1931CIE chromaticity diagram, it is shown that color can be tailored by composition and pump power. The glass ceramic films are attractive materials for application in upconversion lasers and near infrared-to-visible upconverters in solar cells.
Resumo:
The infrared absorption of polysiloxanes involves a strong band at around 1050 cm(-1), attributed to the antisymmetric vibration of siloxane bridges. The splitting of this band into two components is generally attributed to coupling between next-neighbor siloxane groups along the polysiloxane chain. From a quantitative analysis of the spectra of these materials, we find that this splitting is larger when the material is in thin-film form, and that the relative intensity of the two components is polarization dependent. We show that these effects are fully understandable in the theoretical framework of infrared absorption by thin films, and are related to long-range dipolar interactions responsible for the longitudinal-transverse splitting effect in crystalline materials. As a consequence, the polarization dependence of the infrared absorption observed for thin films does not appear to be associated with an orientational ordering in the film. (c) 2012 Elsevier B.V. All rights reserved.