807 resultados para Information Model
Resumo:
The proportional odds model provides a powerful tool for analysing ordered categorical data and setting sample size, although for many clinical trials its validity is questionable. The purpose of this paper is to present a new class of constrained odds models which includes the proportional odds model. The efficient score and Fisher's information are derived from the profile likelihood for the constrained odds model. These results are new even for the special case of proportional odds where the resulting statistics define the Mann-Whitney test. A strategy is described involving selecting one of these models in advance, requiring assumptions as strong as those underlying proportional odds, but allowing a choice of such models. The accuracy of the new procedure and its power are evaluated.
Resumo:
In survival analysis frailty is often used to model heterogeneity between individuals or correlation within clusters. Typically frailty is taken to be a continuous random effect, yielding a continuous mixture distribution for survival times. A Bayesian analysis of a correlated frailty model is discussed in the context of inverse Gaussian frailty. An MCMC approach is adopted and the deviance information criterion is used to compare models. As an illustration of the approach a bivariate data set of corneal graft survival times is analysed. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Background: Selecting the highest quality 3D model of a protein structure from a number of alternatives remains an important challenge in the field of structural bioinformatics. Many Model Quality Assessment Programs (MQAPs) have been developed which adopt various strategies in order to tackle this problem, ranging from the so called "true" MQAPs capable of producing a single energy score based on a single model, to methods which rely on structural comparisons of multiple models or additional information from meta-servers. However, it is clear that no current method can separate the highest accuracy models from the lowest consistently. In this paper, a number of the top performing MQAP methods are benchmarked in the context of the potential value that they add to protein fold recognition. Two novel methods are also described: ModSSEA, which based on the alignment of predicted secondary structure elements and ModFOLD which combines several true MQAP methods using an artificial neural network. Results: The ModSSEA method is found to be an effective model quality assessment program for ranking multiple models from many servers, however further accuracy can be gained by using the consensus approach of ModFOLD. The ModFOLD method is shown to significantly outperform the true MQAPs tested and is competitive with methods which make use of clustering or additional information from multiple servers. Several of the true MQAPs are also shown to add value to most individual fold recognition servers by improving model selection, when applied as a post filter in order to re-rank models. Conclusion: MQAPs should be benchmarked appropriately for the practical context in which they are intended to be used. Clustering based methods are the top performing MQAPs where many models are available from many servers; however, they often do not add value to individual fold recognition servers when limited models are available. Conversely, the true MQAP methods tested can often be used as effective post filters for re-ranking few models from individual fold recognition servers and further improvements can be achieved using a consensus of these methods.
Resumo:
In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory during the winter season in Central England and Wales. We define a Bayesian hierarchical model for predicting the winter trajectories and present results based on the past observed weather. Thanks to the flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the predictands of interest. This is a fundamental progress with respect to the classical methods. The results are encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least in principle. The main two of those consist in conditioning the weather generator model with respect to additional information like the knowledge of the first part of the winter and/or the seasonal weather forecast. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
1.There is concern over the possibility of unwanted environmental change following transgene movement from genetically modified (GM) rapeseed Brassica napus to its wild and weedy relatives. 2. The aim of this research was to develop a remote sensing-assisted methodology to help quantify gene flow from crops to their wild relatives over wide areas. Emphasis was placed on locating sites of sympatry, where the frequency of gene flow is likely to be highest, and on measuring the size of rapeseed fields to allow spatially explicit modelling of wind-mediated pollen-dispersal patterns. 3. Remote sensing was used as a tool to locate rapeseed fields, and a variety of image-processing techniques was adopted to facilitate the compilation of a spatially explicit profile of sympatry between the crop and Brassica rapa. 4. Classified satellite images containing rapeseed fields were first used to infer the spatial relationship between donor rapeseed fields and recipient riverside B. rapa populations. Such images also have utility for improving the efficiency of ground surveys by identifying probable sites of sympatry. The same data were then also used for the calculation of mean field size. 5. This paper forms a companion paper to Wilkinson et al. (2003), in which these elements were combined to produce a spatially explicit profile of hybrid formation over the UK. The current paper demonstrates the value of remote sensing and image processing for large-scale studies of gene flow, and describes a generic method that could be applied to a variety of crops in many countries. 6.Synthesis and applications. The decision to approve or prevent the release of a GM cultivar is made at a national rather than regional level. It is highly desirable that data relating to the decision-making process are collected at the same scale, rather than relying on extrapolation from smaller experiments designed at the plot, field or even regional scale. It would be extremely difficult and labour intensive to attempt to carry out such large-scale investigations without the use of remote-sensing technology. This study used rapeseed in the UK as a model to demonstrate the value of remote sensing in assembling empirical information at a national level.
Resumo:
A novel type of tweezer molecule containing electron-rich 2-pyrenyloxy arms has been designed to exploit intramolecular hydrogen bonding in stabilising a preferred conformation for supramolecular complexation to complementary sequences in aromatic copolyimides. This tweezer-conformation is demonstrated by single-crystal X-ray analyses of the tweezer molecule itself and of its complex with an aromatic diimide model-compound. In terms of its ability to bind selectively to polyimide chains, the new tweezer molecule shows very high sensitivity to sequence effects. Thus, even low concentrations of tweezer relative to diimide units (<2.5 mol%) are sufficient to produce dramatic, sequence-related splittings of the pyromellitimide proton NMR resonances. These induced resonance-shifts arise from ring-current shielding of pyromellitimide protons by the pyrenyloxy arms of the tweezer-molecule, and the magnitude of such shielding is a function of the tweezer-binding constant for any particular monomer sequence. Recognition of both short-range and long-range sequences is observed, the latter arising from cumulative ring-current shielding of diimide protons by tweezer molecules binding at multiple adjacent sites on the copolymer chain.
Resumo:
We present a kinetic model for transformations between different self-assembled lipid structures. The model shows how data on the rates of phase transitions between mesophases of different geometries can be used to provide information on the mechanisms of the transformations and the transition states involved. This can be used, for example, to gain an insight into intermediate structures in cell membrane fission or fusion. In cases where the monolayer curvature changes on going from the initial to the final mesophase, we consider the phase transition to be driven primarily by the change in the relaxed curvature with pressure or temperature, which alters the relative curvature elastic energies of the two mesophase structures. Using this model, we have analyzed previously published kinetic data on the inter-conversion of inverse bicontinuous cubic phases in the 1-monoolein-30 wt% water system. The data are for a transition between QII(G) and QII(D) phases, and our analysis indicates that the transition state more closely resembles the QII(D) than the QII(G) phase. Using estimated values for the monolayer mean curvatures of the QII(G) and QII(D) phases of -0.123 nm(-1) and -0.133 nm(-1), respectively, gives values for the monolayer mean curvature of the transition state of between -0.131 nm(-1) and -0.132 nm(-1). Furthermore, we estimate that several thousand molecules undergo the phase transition cooperatively within one "cooperative unit", equivalent to 1-2 unit cells of QII(G) or 4-10 unit cells of QII(D).
Resumo:
Design management research usually deals with the processes within the professional design team and yet, in the UK, the volume of the total project information produced by the specialist trade contractors equals or exceeds that produced by the design team. There is a need to understand the scale of this production task and to plan and manage it accordingly. The model of the process on which the plan is to be based, while generic, must be sufficiently robust to cover the majority of instances. An approach using design elements, in sufficient depth to possibly develop tools for a predictive model of the process, is described. The starting point is that each construction element and its components have a generic sequence of design activities. Specific requirements tailor the element's application to the building. Then there are the constraints produced due to the interaction with other elements. Therefore, the selection of a component within the element may impose a set of constraints that will affect the choice of other design elements. Thus, a design decision can be seen as an interrelated element-constraint-element (ECE) sub-net. To illustrate this approach, an example of the process within precast concrete cladding has been used.
Resumo:
Design management research usually deals with the processes within the professional design team and yet, in the UK, the volume of the total project information produced by the specialist trade contractors equals or exceeds that produced by the design team. There is a need to understand the scale of this production task and to plan and manage it accordingly. The model of the process on which the plan is to be based, while generic, must be sufficiently robust to cover the majority of instances. An approach using design elements, in sufficient depth to possibly develop tools for a predictive model of the process, is described. The starting point is that each construction element and its components have a generic sequence of design activities. Specific requirements tailor the element's application to the building. Then there are the constraints produced due to the interaction with other elements. Therefore, the selection of a component within the element may impose a set of constraints that will affect the choice of other design elements. Thus, a design decision can be seen as an interrelated element-constraint-element (ECE) sub-net. To illustrate this approach, an example of the process within precast concrete cladding has been used.
Resumo:
Modern buildings are designed to enhance the match between environment, spaces and the people carrying out work, so that the well-being and the performance of the occupants are all in harmony. Building services are systems that facilitate a healthy working environment within which workers productivity can be optimised in the buildings. However, the maintenance of these services is fraught with problems that may contribute to up to 50% of the total life cycle cost of the building. Maintenance support is one area which is not usually designed into the system as this is not common practice in the services industry. The other areas of shortfall for future designs are; client requirements, commissioning, facilities management data and post occupancy evaluation feedback which needs to be adequately planned to capture and document this information for use in future designs. At the University of Reading an integrated approach has been developed to assemble the multitude of aspects inherent in this field. The means records required and measured achievements for the benefit of both building owners and practitioners. This integrated approach can be represented in a Through Life Business Model (TLBM) format using the concept of Integrated Logistic Support (ILS). The prototype TLBM developed utilises the tailored tools and techniques of ILS for building services. This TLBM approach will facilitate the successful development of a databank that would be invaluable in capturing essential data (e.g. reliability of components) for enhancing future building services designs, life cycle costing and decision making by practitioners, in particular facilities managers.
Resumo:
A whole life-cycle information management vision is proposed, the organizational requirements for the realization of the scenario is investigated. Preliminary interviews with construction professionals are reported. Discontinuities at information transfer throughout life-cycle of built environments are resulting from lack of coordination and multiple data collection/storage practices. A more coherent history of these activities can improve the work practices of various teams by augmenting decision making processes and creating organizational learning opportunities. Therefore, there is a need for unifying these fragmented bits of data to create a meaningful, semantically rich and standardized information repository for built environment. The proposed vision utilizes embedded technologies and distributed building information models. Two diverse construction project types (large one-off design, small repetitive design) are investigated for the applicability of the vision. A functional prototype software/hardware system for demonstrating the practical use of this vision is developed and discussed. Plans for case-studies for validating the proposed model at a large PFI hospital and housing association projects are discussed.
Resumo:
The management of information in engineering organisations is facing a particular challenge in the ever-increasing volume of information. It has been recognised that an effective methodology is required to evaluate information in order to avoid information overload and to retain the right information for reuse. By using, as a starting point, a number of the current tools and techniques which attempt to obtain ‘the value’ of information, it is proposed that an assessment or filter mechanism for information is needed to be developed. This paper addresses this issue firstly by briefly reviewing the information overload problem, the definition of value, and related research work on the value of information in various areas. Then a “characteristic” based framework of information evaluation is introduced using the key characteristics identified from related work as an example. A Bayesian Network diagram method is introduced to the framework to build the linkage between the characteristics and information value in order to quantitatively calculate the quality and value of information. The training and verification process for the model is then described using 60 real engineering documents as a sample. The model gives a reasonable accurate result and the differences between the model calculation and training judgements are summarised as the potential causes are discussed. Finally, several further issues including the challenge of the framework and the implementations of this evaluation assessment method are raised.
Resumo:
During locomotion, retinal flow, gaze angle, and vestibular information can contribute to one's perception of self-motion. Their respective roles were investigated during active steering: Retinal flow and gaze angle were biased by altering the visual information during computer-simulated locomotion, and vestibular information was controlled through use of a motorized chair that rotated the participant around his or her vertical axis. Chair rotation was made appropriate for the steering response of the participant or made inappropriate by rotating a proportion of the veridical amount. Large steering errors resulted from selective manipulation of retinal flow and gaze angle, and the pattern of errors provided strong evidence for an additive model of combination. Vestibular information had little or no effect on steering performance, suggesting that vestibular signals are not integrated with visual information for the control of steering at these speeds.
Resumo:
The contribution of retinal flow (RF), extraretinal (ER), and egocentric visual direction (VD) information in locomotor control was explored. First, the recovery of heading from RF was examined when ER information was manipulated; results confirmed that ER signals affect heading judgments. Then the task was translated to steering curved paths, and the availability and veracity of VD were manipulated with either degraded or systematically biased RE Large steering errors resulted from selective manipulation of RF and VD, providing strong evidence for the combination of RF, ER, and VD. The relative weighting applied to RF and VD was estimated. A point-attractor model is proposed that combines redundant sources of information for robust locomotor control with flexible trajectory planning through active gaze.
Resumo:
Successful results from training an adaptive controller to use optical information to balance an inverted pendulum are presented in comparison to the training requirements using traditional controller inputs. Results from research into the psychology of the sense of balance in humans are presented as the motivation for the investigation of this new type of controller. The simulated model of the inverted pendulum and the virtual reality environments used to provide the optical input are described The successful introduction of optical information is found to require the preservation of at least two of the traditional input types and entail increased training time for the adaptive controller and reduced performance (measured as the time the pendulum remains upright).