869 resultados para Inflammation subclinique
Resumo:
Adenosine has been implicated in the pathogenesis of chronic lung diseases such as asthma and chronic obstructive pulmonary disease. In vitro studies suggest that activation of the A2B adenosine receptor (A2BAR) results in proinflammatory and profibrotic effects relevant to the progression of lung diseases; however, in vivo data supporting these observations are lacking. Adenosine deaminase-deficient (ADA-deficient) mice develop pulmonary inflammation and injury that are dependent on increased lung adenosine levels. To investigate the role of the A2BAR in vivo, ADA-deficient mice were treated with the selective A2BAR antagonist CVT-6883, and pulmonary inflammation, fibrosis, and airspace integrity were assessed. Untreated and vehicle-treated ADA-deficient mice developed pulmonary inflammation, fibrosis, and enlargement of alveolar airspaces; conversely, CVT-6883-treated ADA-deficient mice showed less pulmonary inflammation, fibrosis, and alveolar airspace enlargement. A2BAR antagonism significantly reduced elevations in proinflammatory cytokines and chemokines as well as mediators of fibrosis and airway destruction. In addition, treatment with CVT-6883 attenuated pulmonary inflammation and fibrosis in wild-type mice subjected to bleomycin-induced lung injury. These findings suggest that A2BAR signaling influences pathways critical for pulmonary inflammation and injury in vivo. Thus in chronic lung diseases associated with increased adenosine, antagonism of A2BAR-mediated responses may prove to be a beneficial therapy.
Resumo:
Chronic hepatitis occurs when effector lymphocytes are recruited to the liver from blood and retained in tissue to interact with target cells, such as hepatocytes or bile ducts (BDs). Vascular cell adhesion molecule 1 (VCAM-1; CD106), a member of the immunoglobulin superfamily, supports leukocyte adhesion by binding a4b1 integrins and is critical for the recruitment of monocytes and lymphocytes during inflammation. We detected VCAM-1 on cholangiocytes in chronic liver disease (CLD) and hypothesized that biliary expression of VCAM-1 contributes to the persistence of liver inflammation. Hence, in this study, we examined whether cholangiocyte expression of VCAM-1 promotes the survival of intrahepatic a4b1 expressing effector T cells. We examined interactions between primary human cholangiocytes and isolated intrahepatic T cells ex vivo and in vivo using the Ova-bil antigen-driven murine model of biliary inflammation. VCAM-1 was detected on BDs in CLDs (primary biliary cirrhosis, primary sclerosing cholangitis, alcoholic liver disease, and chronic hepatitis C), and human cholangiocytes expressed VCAM-1 in response to tumor necrosis factor alpha alone or in combination with CD40L or interleukin-17. Liver-derived T cells adhered to cholangiocytes in vitro by a4b1, which resulted in signaling through nuclear factor kappa B p65, protein kinase B1, and p38 mitogen-activated protein kinase phosphorylation. This led to increased mitochondrial B-cell lymphoma 2 accumulation and decreased activation of caspase 3, causing increased cell survival. We confirmed our findings in a murine model of hepatobiliary inflammation where inhibition of VCAM-1 decreased liver inflammation by reducing lymphocyte recruitment and increasing CD8 and T helper 17 CD4 Tcell survival. Conclusions: VCAM-1 expression by cholangiocytes contributes to persistent inflammation by conferring a survival signal to a4b1 expressing proinflammatory T lymphocytes in CLD.
Resumo:
BACKGROUND: Inflammatory bowel disease (IBD) and food-responsive diarrhea (FRD) are chronic enteropathies of dogs (CCE) that currently can only be differentiated by their response to treatment after exclusion of other diseases. In humans, increased urinary concentrations of leukotriene E4 (LTE4) have been associated with active IBD. OBJECTIVES: To evaluate urinary LTE4 concentrations in dogs with IBD, FRD, and healthy controls, and to assess correlation of urinary LTE4 concentrations with the canine IBD activity index (CIBDAI) scores. ANIMALS: Eighteen dogs with IBD, 19 dogs with FRD, and 23 healthy control dogs. METHODS: In this prospective study, urine was collected and CIBDAI scores were calculated in client-owned dogs with IBD and those with FRD. Quantification of LTE4 in urine was performed by liquid chromatography-tandem mass spectrometry and corrected to creatinine. RESULTS: Urinary LTE4 concentrations were highest in dogs with IBD (median 85.2 pg/mg creatinine [10th-90th percentiles 10.9-372.6]) followed by those with FRD (median 31.2 pg/mg creatinine [10th-90th percentiles 6.2-114.5]) and control dogs (median 21.1 pg/mg creatinine [10th-90th percentiles 9.1-86.5]). Urinary LTE4 concentrations were higher in dogs with IBD than in control dogs (P = .011), but no significant difference between IBD and FRD was found. No correlation was found between urinary LTE4 concentrations and CIBDAI. CONCLUSIONS AND CLINICAL IMPORTANCE: The higher urinary LTE4 concentrations in dogs with IBD suggest that cysteinyl leukotriene pathway activation might be a component of the inflammatory process in canine IBD. Furthermore, urinary LTE4 concentrations are of potential use as a marker of inflammation in dogs with CCE.
Resumo:
PURPOSE To assess ultrasmall superparamagnetic iron oxide particles (USPIO) -enhanced MR imaging for the differentiation of malignant from benign, inflammatory lesions. MATERIALS AND METHODS In this study, approved by the local animal care committee, VX2 carcinoma and intramuscular abscesses were implanted into the hind thighs of New Zealand White rabbits. MR imaging was performed pre contrast and serially for 24 h after the injection of USPIO. MR findings were compared with histopathologic results based on Prussian blue stains for the presence of iron. RESULTS Twenty-four hours after the Ferumoxtran-injection, no changes were observed in VX2 carcinomas, whereas a mean reduction of the contrast-to-noise ratio (CNR) of approximately 90% was noticed in abscesses as well as in necrotic tumors. On histopathologic examination, abscess and necrotic parts of the tumor were found to include iron-containing monocytes demonstrating that the reduction in CNR was caused by USPIO-tagged monocytes. CONCLUSION Our results prove the ability of USPIO-enhanced MRI to differentiate benign, inflammatory from malignant lesions.
Resumo:
Toll-like receptor-2 (TLR2) mediates host responses to gram-positive bacterial wall components. TLR2 function was investigated in a murine Streptococcus pneumoniae meningitis model in wild-type (wt) and TLR2-deficient (TLR2(-/-)) mice. TLR2(-/-) mice showed earlier time of death than wt mice (P<.02). Plasma interleukin-6 levels and bacterial numbers in blood and peripheral organs were similar for both strains. With ceftriaxone therapy, none of the wt but 27% of the TLR2(-/-) mice died (P<.04). Beyond 3 hours after infection, TLR2(-/-) mice had higher bacterial loads in brain than did wt mice, as assessed with luciferase-tagged S. pneumoniae by means of a Xenogen-CCD (charge-coupled device) camera. After 24 h, tumor necrosis factor activity was higher in cerebrospinal fluid of TLR2(-/-) than wt mice (P<.05) and was related to increased blood-brain barrier permeability (Evans blue staining, P<.02). In conclusion, the lack of TLR2 was associated with earlier death from meningitis, which was not due to sepsis but to reduced brain bacterial clearing, followed by increased intrathecal inflammation.
Resumo:
Matrix metalloproteinases (MMPs) are a family of Zn2+-dependent endopeptidases targeting extracellular matrix (ECM) compounds as well as a number of other proteins. Their proteolytic activity acts as an effector mechanism of tissue remodeling in physiologic and pathologic conditions, and as modulator of inflammation. In the context of neuro-inflammatory diseases, MMPs have been implicated in processes such as (a) blood-brain barrier (BBB) and blood-nerve barrier opening, (b) invasion of neural tissue by blood-derived immune cells, (c) shedding of cytokines and cytokine receptors, and (d) direct cellular damage in diseases of the peripheral and central nervous system. This review focuses on the role of MMPs in multiple sclerosis (MS) and bacterial meningitis (BM), two neuro-inflammatory diseases where current therapeutic approaches are insufficient to prevent severe disability in the majority of patients. Inhibition of enzymatic activity may prevent MMP-mediated neuronal damage due to an overactive or deviated immune response in both diseases. Downregulation of MMP release may be the molecular basis for the beneficial effect of IFN-beta and steroids in MS. Instead, synthetic MMP inhibitors offer the possibility to shut off enzymatic activity of already activated MMPs. In animal models of MS and BM, they efficiently attenuated clinical disease symptoms and prevented brain damage due to excessive metalloproteinase activity. However, the required target profile for the therapeutic use of this novel group of compounds in human disease is not yet sufficiently defined and may be different depending on the type and stage of disease. Currently available MMP inhibitors show little target-specificity within the MMP family and may lead to side-effects due to interference with physiological functions of MMPs. Results from human MS and BM indicate that only a restricted number of MMPs specific for each disease is up-regulated. MMP inhibitors with selective target profiles offer the possibility of a more efficient therapy of MS and BM and may enter clinical trials in the near future.
Resumo:
The purpose of this study was to elaborate on the advantages and limits of computed tomography (CT) in the differentiation of thoracic lesions, in particular neoplasias. In the course of the investigation CT-scans of the thorax of 31 dogs with lesions in the area of the lungs or mediastinum were evaluated. The lesions were rated by morphology, distribution pattern, attenuation values and contrast-enhancement. Biopsies or the whole body underwent a pathohistological examination. Of the 31 dogs 17 had neoplastic and 14 had inflammatory lesions in the thoracic region. With help of the CT, the exact localisations of the different lesions was possible in most cases. Due to their characteristic morphologies, distribution patterns and attenuation values the differentiation between inflammatory and neoplastic lesions was possible in most cases (n=25/31) on the basis of the CT-scans. Mean non-enhanced CT attenuation values of the neoplastic lesions ranged between 31 and 50 HU, of the inflammatory lesions between -251 and 9 HU. Both neoplastic and inflammatory lesions showed contrast enhancement (between 14 and 38 HU and between 2 and 95 HU respectively). The mediastinal abcesses enhanced mainly on the periphery of the lesion. A differentiation of the various types of neoplastic lesions based on the non-enhanced attenuation values was not successful. Only metastasis could be differentiated because of their distribution pattern.
Resumo:
In this 6-week prospective, randomized, placebo-controlled and double-blind study, we investigated the effects of a natural herbal remedy based on a recipe from Tibet (Padma® 28), on microvascular endothelial function, heart rate variability and biomarkers of inflammation, clotting and coagulation in 80 coronary artery disease (CAD) patients (age 66 ± 8 years) on guideline-based medication for secondary prevention. We found no significant effects of Padma 28 and conclude that the addition of Padma 28 to guideline-based secondary prevention treatment of CAD did not lead to significant effects on important surrogate markers in elderly male CAD patients.
Systemic inflammation is higher in peripheral artery disease than in stable coronary artery disease.
Resumo:
OBJECTIVE The knowledge on the level of systemic inflammation in peripheral artery disease (PAD) is less well established than that in coronary artery disease (CAD). Systemic inflammation frequently coincides with atherosclerosis, but also with various traits of the metabolic syndrome (MetS). The individual contribution of CAD, PAD, and the MetS to inflammation is not known. METHODS We enrolled a total of 1396 patients, 460 patients with PAD Fontaine stages IIa-IV verified by duplex ultrasound (PAD group) and 936 patients free of limb claudication undergoing coronary angiography, of whom 507 had significant CAD with coronary stenoses ≥50% (CAD group), and 429 did not have significant CAD at angiography (control group). RESULTS C-reactive protein (CRP) was significantly higher in the PAD than in the CAD or in the control group (0.86 ± 1.85 mg/dl versus 0.44 ± 0.87 mg/dl and 0.39 ± 0.52 mg/dl, respectively, p < 0.001 for both comparisons). These significant differences were confirmed when patients with and subjects without the MetS were analyzed separately. In particular, within the PAD group, CRP was significantly higher in patients with the MetS than in subjects without the MetS (1.04 ± 2.01 vs. 0.67 ± 1.64 mg/dl; p = 0.001) and both, the presence of PAD and the MetS proved to be independently associated with CRP in analysis of covariance (F = 31.84; p < 0.001 and F = 10.52; p = 0.001, respectively). CONCLUSION Inflammatory activity in PAD patients is higher than in CAD patients and is particularly high in PAD patients affected by the MetS. Low grade systemic inflammation is independently associated with both the MetS and PAD.
Resumo:
BACKGROUND Vascular Ehlers-Danlos syndrome (VEDS) causes reduced life expectancy because of arterial dissections/rupture and hollow organ rupture. Although the causative gene, COL3A1, was identified >20 years ago, there has been limited progress in understanding the disease mechanisms or identifying treatments. METHODS AND RESULTS We studied inflammatory and transforming growth factor-β (TGF-β) signaling biomarkers in plasma and from dermal fibroblasts from patients with VEDS. Analyses were done in terms of clinical disease severity, genotype-phenotype correlations, and body composition and fat deposition alterations. VEDS subjects had increased circulating TGF-β1, TGF-β2, monocyte chemotactic protein-1, C-reactive protein, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and leptin and decreased interleukin-8 versus controls. VEDS dermal fibroblasts secreted more TGF-β2, whereas downstream canonical/noncanonical TGF-β signaling was not different. Patients with COL3A1 exon skipping mutations had higher plasma intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, and VEDS probands had abnormally high plasma C-reactive protein versus affected patients identified through family members before any disease manifestations. Patients with VEDS had higher mean platelet volumes, suggesting increased platelet turnover because of ongoing vascular damage, as well as increased regional truncal adiposity. CONCLUSIONS These findings suggest that VEDS is a systemic disease with a major inflammatory component. C-reactive protein is linked to disease state and may be a disease activity marker. No changes in downstream TGF-β signaling and increased platelet turnover suggest that chronic vascular damage may partially explain increased plasma TGF-β1. Finally, we found a novel role for dysregulated TGF-β2, as well as adipocyte dysfunction, as demonstrated through reduced interleukin-8 and elevated leptin in VEDS.
Resumo:
The Duffy antigen/receptor for chemokines, DARC, belongs to the family of atypical heptahelical chemokine receptors that do not couple to G proteins and therefore fail to transmit conventional intracellular signals. Here we show that during experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, the expression of DARC is upregulated at the blood-brain barrier. These findings are corroborated by the presence of a significantly increased number of subcortical white matter microvessels staining positive for DARC in human multiple sclerosis brains as compared to control tissue. Using an in vitro blood-brain barrier model we demonstrated that endothelial DARC mediates the abluminal to luminal transport of inflammatory chemokines across the blood-brain barrier. An involvement of DARC in experimental autoimmune encephalomyelitis pathogenesis was confirmed by the observed ameliorated experimental autoimmune encephalomyelitis in Darc(-/-) C57BL/6 and SJL mice, as compared to wild-type control littermates. Experimental autoimmune encephalomyelitis studies in bone marrow chimeric Darc(-/-) and wild-type mice revealed that increased plasma levels of inflammatory chemokines in experimental autoimmune encephalomyelitis depended on the presence of erythrocyte DARC. However, fully developed experimental autoimmune encephalomyelitis required the expression of endothelial DARC. Taken together, our data show a role for erythrocyte DARC as a chemokine reservoir and that endothelial DARC contributes to the pathogenesis of experimental autoimmune encephalomyelitis by shuttling chemokines across the blood-brain barrier.