935 resultados para Induced Damage
Resumo:
Antioxidant species may act in vivo to decrease oxidative damage to DNA, protein and lipids thus reducing the risk of coronary heart disease and cancer. Phytoestrogens are plant compounds which are a major component of traditional Asian diets and which may be protective against certain hormone-dependent cancers (breast and prostate) and against coronary heart disease. They may also be able to function as antioxidants, scavenging potentially harmful free radicals. In this study, the effects of the isoflavonoids (a class of phytoestrogen) genistein and equol on hydrogen peroxide-mediated DNA damage in human lymphocytes were determined using alkaline single-cell gel electrophoresis (the comet assay). Treatment with hydrogen peroxide significantly increased the levels of DNA strand breaks. Pre-treatment of the cells with both genistein and equol offered protection against this damage at concentrations within the physiological range. This protection was greater than that offered by addition of the known antioxidant vitamins ascorbic acid and alpha -tocopherol, or the compounds 17 beta -oestradiol and Tamoxifen which have similar structures to isoflavonoids and are known to have weak antioxidant properties. These findings are consistent with the hypothesis that phytoestrogens can, under certain conditions, function as antioxidants and protect against oxidatively-induced DNA damage. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Resistance to cisplatin chemotherapy remains a major hurdle preventing effective treatment of many solid cancers. BAX and BAK are pivotal regulators of the mitochondrial apoptosis pathway, however little is known regarding their regulation in cisplatin resistant cells. Cisplatin induces DNA damage in both sensitive and resistant cells, however the latter exhibits a failure to initiate N-terminal exposure of mitochondrial BAK or mitochondrial SMAC release. Both phenotypes are highly sensitive to mitochondrial permeabilisation induced by exogenous BH3 domain peptides derived from BID, BIM, NOXA (which targets MCL-1 and A1), and there is no significant change in their prosurvival BCL2 protein expression profiles. Obatoclax, a small molecule inhibitor of pro-survival BCL-2 family proteins including MCL-1, decreases cell viability irrespective of platinum resistance status across a panel of cell lines selected for oxaliplatin resistance. In summary, selection for platinum resistance is associated with a block of mitochondrial death signalling upstream of BAX/BAK activation. Conservation of sensitivity to BH3 domain induced apoptosis can be exploited by agents such as obatoclax, which directly target the mitochondria and BCL-2 family.
Resumo:
The tumor suppressor p53 has a crucial role in cellular response to DNA damage caused by ionizing radiation, but it is still unclear whether p53 can modulate radiation-induced bystander effects (RIBE). In the present work, three different hepatoma cell lines, namely HepG2 (wild p53), PLC/PRF/5 (mutation p53) and Hep3B (p53 null), were irradiated with c-rays and then co-cultured with normal Chang liver cell (wild p53) in order to elucidate the mechanisms of RIBE. Results showed that the radiosensitivity of HepG2 cells was higher than that of PLC/PRF/5 and Hep3B cells. Only irradiated HepG2 cells, rather than irradiated PLC/PRF/5 or Hep3B cells, could induce bystander effect of micronuclei (MN) formation in the neighboring Chang liver cells. When HepG2 cells were treated with 20 mu M pifithrin-alpha, an inhibitor of p53 function, or 5 lM cyclosporin A (CsA), an inhibitor of cytochrome- c release from mitochondria, the MN induction in bystander Chang liver cells was diminished. In fact, it was found that after irradiation, cytochrome- c was released from mitochondria into the cytoplasm only in HepG2 cells in a p53- dependent manner, but not in PLC/PRF/5 and Hep3B cells. Interestingly, when 50 lg/ml exogenous cytochrome- c was added into cell co- culture medium, RIBE was significantly triggered by irradiated PLC/PRF/5 and Hep3B cells, which previously failed to provoke a bystander effect. In addition, this exogenous cytochrome- c also partly recovered the RIBE induced by irradiated HepG2 cells even with CsA treatment. Our results provide new evidence that the RIBE can be modulated by the p53 status of irradiated hepatoma cells and that a p53- dependent release of cytochrome- c may be involved in the RIBE. Oncogene (2011) 30, 1947- 1955; doi: 10.1038/onc. 2010.567; published online 6 December 2010
Resumo:
Cellular response to radiation damage is made by a complex network of pathways and feedback loops whose spatiotemporal organization is still unclear despite its decisive role in determining the fate of the damaged cell. The single-cell approach and the high spatial resolution offered by microbeams provide the perfect tool to study and quantify the dynamic processes associated with the induction and repair of DNA damage. The soft X-ray microbeam has been used to follow the development of radiation induced foci in live cells by monitoring their size and intensity as a function of dose and time using yellow fluorescent protein (YFP) tagging techniques. Preliminary data indicate a delayed and linear rising of the intensity signal indicating a slow kinetic for the accumulation of DNA repair protein 53BP1. A slow and limited foci diffusion has also been observed. Further investigations are required to assess whatever such diffusion is consistent with a random walk pattern or if it is the result of a more structured lesion processing phenomenon. In conclusion, our data indicates that the use of microbeams coupled to live cell microscopy represent a sophisticated approach for visualizing and quantifying the dynamics changes of DNA proteins at the damaged sites.
Resumo:
Residual stress due to shrinkage of polymethylmethacrylate bone cement after polymerisation is possibly one factor capable of initiating cracks in the mantle of cemented hip replacements. No relationship between residual stress and observed cracking of cement has yet been demonstrated. To investigate if any relationship exists, a physical model has been developed which allows direct observation of damage in the cement layer on the femoral side of total hip replacement. The model contains medial and lateral cement layers between a bony surface and a metal stem; the tubular nature of the cement mantle is ignored. Five specimens were prepared and examined for cracking using manual tracing of stained cracks, observed by transmission microscopy: cracks were located and measured using image analysis. A mathematical approach for the prediction of residual stress due to shrinkage was developed which uses the thermal history of the material to predict when stress-locking occurs, and estimates subsequent thermal stress. The residual stress distribution of the cement layer in the physical model was then calculated using finite element analysis. Results show maximum tensile stresses normal to the observed crack directions, suggesting a link between residual stress and preload cracking. The residual stress predicted depends strongly on the definition of the reference temperature for stress-locking. The highest residual stresses (4-7 MPa) are predicted for shrinkage from maximum temperature, in this case, magnitudes are sufficiently high to initiate cracks when the influence of stress raisers such as pores or interdigitation at the bone/cement interface are taken into account (up to 24 MPa when calculating stress around a pore according to the method of Harrigan and Harris (J. Biomech. 24(11) (1991) 1047-1058)). We conclude that the damage accumulation failure scenario begins before weight-bearing due to cracking induced by residual stress around pores or stress raisers. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Cdk2 and cdk1 are individually dispensable for cell-cycle progression in cancer cell lines because they are able to compensate for one another. However, shRNA-mediated depletion of cdk1 alone or small molecule cdk1 inhibition abrogated S phase cell-cycle arrest and the phosphorylation of a subset of ATR/ATM targets after DNA damage. Loss of DNA damage-induced checkpoint control was caused by a reduction in formation of BRCA1-containing foci. Mutation of BRCA1 at S1497 and S1189/S1191 resulted in loss of cdk1-mediated phosphorylation and also compromised formation of BRCA1-containing foci. Abrogation of checkpoint control after cdk1 depletion or inhibition in non-small-cell lung cancer cells sensitized them to DNA-damaging agents. Conversely, reduced cdk1 activity caused more potent G2/M arrest in nontransformed cells and antagonized the response to subsequent DNA damage. Cdk1 inhibition may therefore selectively sensitize BRCA1-proficient cancer cells to DNA-damaging treatments by disrupting BRCA1 function.
Resumo:
Decreased cerebral blood flow causes cognitive impairments and neuronal injury in vascular dementia. In the present study, we reported that donepezil, a cholinesterase inhibitor, improved transient global cerebral ischemia-induced spatial memory impairment in gerbils. Treatment with 5mg/kg of donepezil for 21 consecutive days following a 10-min period of ischemia significantly inhibited delayed neuronal death in the hippocampal CA1 region. In Morris water maze test, memory impairment was significantly improved by donepezil treatment. Western blot analysis showed that donepezil treatment prevented reductions in p-CaMKII and p-CREB protein levels in the hippocampus. These results suggest that donepezil attenuates the memory deficit induced by transient global cerebral ischemia and this neuroprotection may be associated with the phosphorylation of CaMKII and CERB in the hippocampus.
Resumo:
The desorption of oligonucleotides by 3 mu m laser irradiation has been studied by laser induced fluorescence imaging of the resulting gas phase plumes. Fitting of the plume data has been achieved by using a modified Maxwell Boltzmann distribution which incorporates a range of stream velocities. Spatial density profiles, velocities and temperature variation have been determined from these fits indicating that the oligonucleotide plume only achieves a partial thermal relaxation. This laser desorption technique may provide a means of overcoming the limited mass range of gas phase biomolecules available from thermal evaporation techniques.
Resumo:
Radiation-induced bystander responses are observed when cells respond to their neighbours being irradiated. Considerable evidence is now available regarding the importance of these responses in cell and tissue models. Most studies have utilized two approaches where either a media-transferable factor has been assessed or cells have been exposed to low fluences of charged particles, where only a few percent are exposed. The development of microbeams has allowed nontargeted responses such as bystander effects to be more carefully analysed. As well as charged particle microbeams, X-ray microprobes have been developed, and several groups are also developing electron microbeams. Using the Gray Cancer Institute soft X-ray microprobe, it has been possible to follow the response of individual cells to targeted low doses of carbon-characteristic soft X-rays. Studies in human fibroblasts have shown evidence of a significant radiation quality-dependent bystander effect, measured as chromosomal damage in the form of micronuclei which is radiation quality dependent. Other studies show that even under conditions when only a single cell is targeted with soft X-rays, significant bystander-mediated cell killing is observed. The observation of bystander responses with low LET radiation suggests that these may be important in understanding radiation risk from background levels of radiation, where cells observe only single electron track traversals. Also, the indirect evidence for these responses in vivo indicates that they may have a role to play in current radiotherapy approaches and future novel strategies involving modulating nontargeted responses.
Resumo:
One of the important temporal stages of radiation action in cellular systems is the chemical phase, where oxygen fixation reactions compete with chemical repair reactions involving reducing agents such as GSH. Using the gas explosion technique it is possible to follow the kinetics of these fast (> 1 ms) reactions in intact cells. We have compared the chemical repair kinetics of the oxygen-dependent free radical precursors leading to DNA single-strand and double-strand breaks, measured using filter elution techniques, with those leading to cell killing in V79 cells. The chemical repair rates for DNA dsb (670s-1 at pH 7.2 and 380s-1 at pH 9.6) and cell killing (530s-1) were similar. This is in agreement with the important role of DNA dsb in radiation induced cell lethality. The rate for DNA ssb precursors was significantly slower (210s-1). The difference in rate between DNA ssb and dsb precursors may be explained on the basis of a dsb free radical precursor consisting of a paired radical, one radical on each strand. The instantaneous probability of one or other of these radicals being chemically repaired and not proceeding to form a dsb will be twice that of a ssb radical precursor. This agrees well with the concept of locally multiply damaged sites (LMDS) produced from clusters of ionizations in DNA (Ward 1985).
Resumo:
All ionizing radiations deposit energy stochastically along their tracks. The resulting distribution of energies deposited in a small target such as the DNA helix leads to a corresponding spectrum in the severity of damage produced. So far, most information about the probable spectra of DNA lesion complexity has come from Monte Carlo studies which endeavour to model the relationship between the energy deposited in DNA and the damage induced. The aim of this paper is to establish methods of determining this relationship by irradiating pBR322 plasmid DNA using low energy electrons with energies comparable with the minimum energy thought to produce critical damage. The technique of agarose gel electrophoresis has been used to ascertain the fraction of DNA single- and double-strand breaks induced by monoenergetic electrons with energies as low as 25 eV. Our data show that the threshold electron energy for induction of single-strand breaks is
Resumo:
Purpose: To analyse the currently existing methods to infer the extent of cellular DNA damage induced by ionizing radiation when the pulsed field gel electrophoresis (PFGE) technique is used.
Resumo:
Underpinning current models of the mechanisms of the action of radiation is a central role for DNA damage and in particular double-strand breaks (DSBs). For radiations of different LET, there is a need to know the exact yields and distributions of DSBs in human cells. Most measurements of DSB yields within cells now rely on pulsed-field gel electrophoresis as the technique of choice. Previous measurements of DSB yields have suggested that the yields are remarkably similar for different types of radiation with RBE values less than or equal to1.0. More recent studies in mammalian cells, however, have suggested that both the yield and the spatial distribution of DSBs are influenced by radiation quality. RBE values for DSBs induced by high-LET radiations are greater than 1.0, and the distributions are nonrandom. Underlying this is the interaction of particle tracks with the higher-order chromosomal structures within cell nuclei. Further studies are needed to relate nonrandom distributions of DSBs to their rejoining kinetics. At the molecular level, we need to determine the involvement of clustering of damaged bases with strand breakage, and the relationship between higher-order clustering over sizes of kilobase pairs and above to localized clustering at the DNA level. Overall, these studies will allow us to elucidate whether the nonrandom distributions of breaks produced by high-LET particle tracks have any consequences for their repair and biological effectiveness. (C) 2001 by Radiation Research Society.
Resumo:
The rejoining kinetics of double-stranded DNA fragments, along with measurements of residual damage after postirradiation incubation, are often used as indicators of the biological relevance of the damage induced by ionizing radiation of different qualities. Although it is widely accepted that high-LET radiation-induced double-strand breaks (DSBs) tend to rejoin with kinetics slower than low-LET radiation-induced DSBs, possibly due to the complexity of the DSB itself, the nature of a slowly rejoining DSB-containing DNA lesion remains unknown. Using an approach that combines pulsed-field gel electrophoresis (PFGE) of fragmented DNA from human skin fibroblasts and a recently developed Monte Carlo simulation of radiation-induced DNA breakage and rejoining kinetics, we have tested the role of DSB-containing DNA lesions in the 8-kbp-5.7-Mbp fragment size range in determining the DSB rejoining kinetics. It is found that with low-LET X rays or high LET alpha particles, DSB rejoining kinetics data obtained with PFGE can be computer-simulated assuming that DSB rejoining kinetics does not depend on spacing of breaks along the chromosomes. After analysis of DNA fragmentation profiles, the rejoining kinetics of X-ray-induced DSBs could be fitted by two components: a fast component with a half-life of 0.9 +/- 0.5 h and a slow component with a half-life of 16 +/- 9 h. For a particles, a fast component with a half-life of 0.7 +/- 0.4 h and a slow component with a half-life of 12 5 h along with a residual fraction of unrepaired breaks accounting for 8% of the initial damage were observed. In summary, it is shown that genomic proximity of breaks along a chromosome does not determine the rejoining kinetics, so the slowly rejoining breaks induced with higher frequencies after exposure to high-LET radiation (0.37 +/- 0.12) relative to low-LET radiation (0.22 +/- 0.07) can be explained on the basis of lesion complexity at the nanometer scale, known as locally multiply damaged sites. (c) 2005 by Radiation Research Society.
Resumo:
Bystander responses have been reported to be a major determinant of the response of cells to radiation exposure at low doses, including those of relevance to therapy. This study investigated the role of changes in calcium levels in bystander responses leading to chromosomal damage in nonirradiated T98G glioma cells and AG01522 fibroblasts that had been either exposed to conditioned medium from irradiated cells or co-cultured with a population where a fraction of cells were individually targeted through the nucleus or cytoplasm with a precise number of microbeam helium-3 particles. After the recipient cells were treated with conditioned medium from T98G or AG01522 cells that had been irradiated through either nucleus or cytoplasm, rapid calcium fluxes were monitored in the nonirradiated recipient cells. Their characteristics were dependent on the source of the conditioned medium but had no dependence on radiation dose. When recipient cells were co-cultured with an irradiated population of either T98G or AG01522 cells, micronuclei were induced in the nonirradiated cells, but this response was eliminated by treating the cells with calcicludine (CaC), a potent blocker of Ca2+ channels. Moreover, both the calcium fluxes and the bystander effect were inhibited when the irradiated T98G cells were treated with aminoguanidine, an inhibitor of nitric oxide synthase (NOS), and when the irradiated AG01522 cells were treated with DMSO, a scavenger of reactive oxygen species (ROS), which indicates that NO and ROS were involved in the bystander responses generated from irradiated T98G and AG01522 cells, respectively. Our findings indicate that calcium signaling may be an early response in radiation-induced bystander effects leading to chromosome damage. (c) 2006 by Radiation Research Society.