998 resultados para Indemnity against liability
Resumo:
Vaccines have had an unquestionable impact on public health during the last century. The most likely reason for the success of vaccines is the robust protective properties of specific antibodies. However, antibodies exert a strong selective pressure and many microorganisms, such as the obligatory intracellular parasite Trypanosoma cruzi, have been selected to survive in their presence. Although the host develops a strong immune response to T. cruzi, they do not clear the infection and instead progress to the chronic phase of the disease. Parasite persistence during the chronic phase of infection is now considered the main factor contributing to the chronic symptoms of the disease. Based on this finding, containment of parasite growth and survival may be one method to avoid the immunopathology of the chronic phase. In this context, vaccinologists have looked over the past 20 years for other immune effector mechanisms that could eliminate these antibody-resistant pathogens. We and others have tested the hypothesis that non-antibody-mediated cellular immune responses (CD4+ Th1 and CD8+ Tc1 cells) to specific parasite antigens/genes expressed by T. cruzi could indeed be used for the purpose of vaccination. This hypothesis was confirmed in different mouse models, indicating a possible path for vaccine development.
Resumo:
Upon infection, Trypanosoma cruzi triggers a strong immune response that has both protective and pathological consequences. In this work, several important questions regarding protective immunity are reviewed. Emphasis is placed on recent studies of the important protective role of CD8+ T cells and on previous studies of immunisation of domestic T. cruzi reservoirs that sought to address practical vaccination problems. Research on the maturation of memory cells and studies indicating that the prevalence of T. cruzi-specific T-cell responses and a high frequency of committed CD8+ T cells are associated with better clinical outcomes are also reviewed. Additionally, animal models in which protection was achieved without immunopathological consequences are discussed.
Resumo:
For decades thimerosal has been used as a preservative in the candidate vaccine for cutaneous leishmaniasis, which was developed by Mayrink et al. The use of thimerosal in humans has been banned due to its mercury content. This study addresses the standardization of phenol as a new candidate vaccine preservative. We have found that the proteolytic activity was abolished when the test was conducted using the candidate vaccine added to merthiolate (MtVac) as well as to phenol (PhVac). The Montenegro's skin test conversion rates induced by MtVac and by PhVac was 68.06% and 85.9%, respectively, and these values were statistically significant (p < 0.05). The proliferative response of peripheral mononuclear blood cells shows that the stimulation index of mice immunized with both candidate vaccines was higher than the one in control animals (p < 0.05). The ability of the candidate vaccines to induce protection in C57BL/10 mice against a challenge with infective Leishmania amazonensis promastigotes was tested and the mice immunized with PhVac developed smaller lesions than the mice immunized with MtVac. Electrophoresis of phenol-preserved antigen revealed a number of proteins, which were better preserved in PhVac. These results do in fact encourage the use of phenol for preserving the immunogenic and biochemical properties of the candidate vaccine for cutaneous leishmaniasis.
Resumo:
AIMS/HYPOTHESIS: In insulin-secreting cells, activation of the c-Jun NH(2)-terminal kinase (JNK) pathway triggers apoptosis. Whereas JNK1 and JNK2 are ubiquitously produced, JNK3 has been described exclusively in neurons. This report aims to characterise the expression and role in apoptosis of the three JNK isoforms in insulin-secreting cells exposed to cytokines. METHODS: Sections of human and mouse pancreases were used for immunohistochemistry studies with isoform-specific anti-JNK antibodies. Human, pig, mouse and rat pancreatic islets were isolated by enzymatic digestion and RNA or protein extracts were prepared. RNA and protein levels were determined by quantitative RT-PCR and western blotting respectively, using JNK-isoform-specific primers and isoform-specific antibodies; activities of the three JNK isoforms were determined by kinase assays following quantitative immunoprecipitation/depletion of JNK3. JNK silencing was performed with small interfering RNAs and apoptotic rates were determined in INS-1E cells by scoring cells displaying pycnotic nuclei. RESULTS: JNK3 and JNK2 mRNAs are the predominant isoforms expressed in human pancreatic islets. JNK3 is nuclear while JNK2 is also cytoplasmic. In INS-1E cells, JNK3 knockdown increases c-Jun levels and caspase-3 cleavage and sensitises cells to cytokine-induced apoptosis; in contrast, JNK1 or JNK2 knockdown is protective. CONCLUSIONS/INTERPRETATION: In insulin-secreting cells, JNK3 plays an active role in preserving pancreatic beta cell mass from cytokine attacks. The specific localisation of JNK3 in the nucleus, its recruitment by cytokines, and its effects on key transcription factors such as c-Jun, indicate that JNK3 is certainly an important player in the transcriptional control of genes expressed in insulin-secreting cells.
Resumo:
This work aimed to develop a new therapeutic approach to increase the efficacy of 5-fluorouracil (5-FU) in the treatment of advanced or recurrent colon cancer. 5-FU-loaded biodegradable poly(ε-caprolactone) nanoparticles (PCL NPs) were combined with the cytotoxic suicide gene E (combined therapy). The SW480 human cancer cell line was used to assay the combined therapeutic strategy. This cell line was established from a primary adenocarcinoma of the colon and is characterized by an intrinsically high resistance to apoptosis that correlates with its resistance to 5-FU. 5-FU was absorbed into the matrix of the PCL NPs during synthesis using the interfacial polymer disposition method. The antitumor activity of gene E from the phage ϕX174 was tested by generating a stable clone (SW480/12/E). In addition, the localization of E protein and its activity in mitochondria were analyzed. We found that the incorporation of 5-FU into PCL NPs (which show no cytotoxicity alone), significantly improved the drug's anticancer activity, reducing the proliferation rate of colon cancer cells by up to 40-fold when compared with the nonincorporated drug alone. Furthermore, E gene expression sensitized colon cancer cells to the cytotoxic action of the 5-FU-based nanomedicine. Our findings demonstrate that despite the inherent resistance of SW480 to apoptosis, E gene activity is mediated by an apoptotic phenomenon that includes modulation of caspase-9 and caspase-3 expression and intense mitochondrial damage. Finally, a strongly synergistic antiproliferative effect was observed in colon cancer cells when E gene expression was combined with the activity of the 5-FU-loaded PCL NPs, thereby indicating the potential therapeutic value of the combined therapy.
Resumo:
In this paper, we showed for the first time that the conserved domains within Schistosoma mansoni ATP diphosphohydrolase isoforms, shared with potato apyrase, possess epitopes for the IgG1 and IgG4 subtypes, as 24 (80%) of the 30 schistosomiasis patients were seropositive for this vegetable protein. The analyses for each patient cured (n = 14) after treatment (AT) with praziquantel revealed variable IgG1 and IgG4 reactivity against potato apyrase. Different antigenic epitopes shared between the vegetable and parasite proteins could be involved in susceptibility or resistance to S. mansoni AT with praziquantel and these possibilities should be explored.
Resumo:
Schistosoma mansoni ATP diphosphohydrolase isoforms and potato apyrase share conserved epitopes. By enzyme-linked immunosorbent assays, elevated levels of IgM, IgG2a and IgG1 antibody reactivity against potato apyrase were observed in S. mansoni-infected BALB/c mice during the acute phase of infection, while only IgM and IgG1 antibody reactivity levels maintained elevated during the chronic phase of infection. Antibody reactivity against potato apyrase was monitored over an 11-month period in chronically-infected mice treated with oxamniquine. Eleven months later, the level of seropositive IgM decreased significantly (~30%) compared to the level found in untreated, infected mice. The level of seropositive IgG1 decreased significantly four months after treatment (MAT) (61%) and remained at this level even after 11 months. The IgG2a reactivity against potato apyrase, although unchanged during chronic phase to 11 MAT, appeared elevated again in re-infected mice suggesting a response similar to that found during the acute phase. BALB/c mouse polyclonal anti-potato apyrase IgG reacted with soluble egg antigens probably due to the recognition of parasite ATP diphosphohydrolase. This study, for the first time, showed that the IgG2a antibody from S. mansoni-infected BALB mice cross-reacts with potato apyrase and the level of IgG2a in infected mice differentiates disease phases. The results also suggest that different conserved-epitopes contribute to the immune response in schistosomiasis.
Resumo:
The potential use of the Trypanosoma cruzi metacyclic trypomastigote (MT) stage-specific molecule glycoprotein-82 (gp82) as a vaccine target has not been fully explored. We show that the opsonization of T. cruzi MT with gp82-specific antibody prior to mucosal challenge significantly reduces parasite infectivity. In addition, we investigated the immune responses as well as the systemic and mucosal protective immunity induced by intranasal CpG-adjuvanted gp82 vaccination. Spleen cells from mice immunized with CpG-gp82 proliferated and secreted IFN-γ in a dose-dependent manner in response to in vitro stimulation with gp82 and parasite lysate. More importantly, these CpG-gp82-immunized mice were significantly protected from a biologically relevant oral parasite challenge.
Resumo:
Cervical cancer results from cervical infection by human papillomaviruses (HPVs), especially HPV16. An effective vaccine against these HPVs is expected to have a dramatic impact on the incidence of this cancer and its precursor lesions. The leading candidate, a subunit prophylactic HPV virus-like particle (VLP) vaccine, can protect women from HPV infection. An alternative improved vaccine that avoids parenteral injection, that is efficient with a single dose, and that induces mucosal immunity might greatly facilitate vaccine implementation in different settings. In this study, we have constructed a new generation of recombinant Salmonella organisms that assemble HPV16 VLPs and induce high titers of neutralizing antibodies in mice after a single nasal or oral immunization with live bacteria. This was achieved through the expression of a HPV16 L1 capsid gene whose codon usage was optimized to fit with the most frequently used codons in Salmonella. Interestingly, the high immunogenicity of the new recombinant bacteria did not correlate with an increased expression of L1 VLPs but with a greater stability of the L1-expressing plasmid in vitro and in vivo in absence of antibiotic selection. Anti-HPV16 humoral and neutralizing responses were also observed with different Salmonella enterica serovar Typhimurium strains whose attenuating deletions have already been shown to be safe after oral vaccination of humans. Thus, our findings are a promising improvement toward a vaccine strain that could be tested in human volunteers.
Resumo:
Background: Local antibiotics may significantly improve the treatmentoutcome in bone infection without systemic toxicity. For impregnationof polymethylmethacrylate (PMMA), gentamicin, vancomycin and/orclindamycin are currently used. A new lipopeptid antibiotic,daptomycin, is a promising candidate for local treatment due to itsspectrum against staphylococci and enterococci (including multiresistantstrains), and concentration-dependent rapid bactericidalactivity. We investigated activity of antibiotic-loaded PMMA againstStaphylococcus epidermidis biofilms using an ultra-sensitive bacterialheat detection method (microcalorimetry).Methods: Staphylococcus epidermidis (strain RP62A, susceptibleto daptomycin, vancomycin and gentamicin) at concentration 106bacteria/ml was incubated with 2 g-PMMA block (Palacos, HeraeusMedical, Hanau, Germany) in 25 ml tryptic soy broth (TSB)supplemented with calcium. PMMA blocks were preloaded withdaptomycin, vancomycin and gentamicin each at 2 g/40 mg (= 100 mg/block) PMMA. After 72 h-incubation at 35 °C under static conditions,PMMA blocks were rinsed in phosphate-buffered solution (PBS) 5times and transferred in 4 ml-microcalorimetry ampoule filled with 1 mlTSB. Bacterial heat production, which is proportional to the quantityof biofilm on PMMA surface, was measured by isothermalmicrocalorimetry. The detection time was calculated as the time untilthe heat flow reached 20 microwatt.Results: Biomechanical properties did not differ between antibioticloadedand non-loaded PMMA blocks. The mean detection time (±standard deviation) of bacterial heat was 6.5 ± 0.4 h for PMMA withoutantibiotics (negative control), 13.5 ± 4.6 h for PMMA with daptomycin,14.0 ± 4.1 h for PMMA with vancomycin and 5.0 ± 0.4 h for PMMAwith gentamicin.Conclusion: Our data indicates that antibiotics at 2 g/40 mg PMMAdid not change the biomechanical properties of bone cement. Daptomycinand vancomycin were more active than gentamicin against S.epidermidis biofilms when all tested at 2 g/40 mg PMMA. In the nextstep, higher concentrations of daptomycin and their elution kineticneeds to be determined to optimize its antibiofilm activity before usingin the clinical setting.
Resumo:
This study evaluated two vaccine candidates for their effectiveness in protecting BALB/c mice against Leishmania chagasiinfection. These immunogenic preparations were composed of Leishmania amazonensisor Leishmania braziliensisantigenic extracts in association with saponin adjuvant. Mice were given three subcutaneous doses of one of these vaccine candidates weekly for three weeks and four weeks later challenged with promastigotes of L. chagasiby intravenous injection. We observed that both vaccine candidates induced a significant reduction in the parasite load of the liver, while the L. amazonensisantigenic extract also stimulated a reduction in spleen parasite load. This protection was associated with a suppression of both interleukin (IL)-10 and IL-4 cytokines by spleen cells in response to L. chagasiantigen. No change was detected in the production of IFN-γ. Our data show that these immunogenic preparations reduce the type 2 immune response leading to the control of parasite replication.
Resumo:
Interleukin (IL)-15 is a pleiotropic cytokine that regulates the proliferation and survival of many cell types. IL-15 is produced by monocytes and macrophages against infectious agents and plays a pivotal role in innate and adaptive immune responses. This study analyzed the effect of IL-15 on fungicidal activity, oxidative metabolism and cytokine production by human monocytes challenged in vitro with Paracoccidioides brasiliensis (Pb18), the agent of paracoccidioidomycosis. Peripheral blood monocytes were pre-incubated with IL-15 and then challenged with Pb18. Fungicidal activity was assessed by viable fungi recovery from cultures after plating on brain-heart infusion-agar. Superoxide anion (O2-), hydrogen peroxide (H2O2), tumour necrosis factor-alpha (TNF-α), IL-6, IL-15 and IL-10 production by monocytes were also determined. IL-15 enhanced fungicidal activity against Pb18 in a dose-dependent pattern. This effect was abrogated by addition of anti-IL-15 monoclonal antibody. A significant stimulatory effect of IL-15 on O2- and H2O2 release suggests that fungicidal activity was dependent on the activation of oxidative metabolism. Pre-treatment of monocytes with IL-15 induced significantly higher levels of TNF-α, IL-10 and IL-15 production by cells challenged with the fungus. These results suggest a modulatory effect of IL-15 on pro and anti-inflammatory cytokine production, oxidative metabolism and fungicidal activity of monocytes during Pb18 infection.
Resumo:
Despite effective chemotherapy, schistosomiasis remains the second largest public health problem in the developing world. Currently, vaccination is the new strategy for schistosomiasis control. The presence of common antigenic fractions between Schistosoma mansoni and its intermediate host provides a source for the preparation of a proper vaccine. The objective of this paper is to evaluate the nucleoprotein extracted from either susceptible or resistant snails to protect against schistosomiasis. The vaccination schedule consisted of a subcutaneous injection of 50 µg protein of each antigen followed by another inoculation 15 days later. Analyses of marker enzymes for different cell organelles [succinate dehydrogenase, lactate dehydrogenase (LDH), glucose-6-phosphatase, acid phosphatase and 5'-nucleotidase] were carried out. Energetic parameters (ATP, ADP, AMP, phosphate potentials, inorganic phosphate, amino acids and LDH isoenzymes) were also investigated. The work was extended to record worm and ova counts, oogram determination in the liver and intestine and the histopathological pattern of the liver. The nucleoprotein of susceptible snails showed reduction in worm and ova counts by 70.96% and 51.31%, respectively, whereas the nucleoprotein of resistant snails showed reductions of 9.67% and 16.77%, respectively. In conclusion, we found that the nucleoprotein of susceptible snails was more effective in protecting against schistosomiasis.
Resumo:
The activity of the antineoplastic drug tamoxifen was evaluated against Trypanosoma cruzi. In vitro activity was determined against epimastigote, trypomastigote and amastigote forms of CL14, Y and Y benznidazole resistant T. cruzi strains. Regardless of the strain used, the drug was active against all life-cycle stages of the parasite with a half maximal effective concentration ranging from 0.7-17.9 µM. Two experimental models of acute Chagas disease were used to evaluate the in vivo efficacy of treatment with tamoxifen. No differences in parasitemia and mortality were observed between control mock-treated and tamoxifen-treated mice.
Resumo:
Pathogens represent a threat to all organisms, which generates a coevolutionary arms race. Social insects provide an interesting system to study host-pathogen interactions, because their defences depend on both the individual and collective responses, and involve genetic, physiological, behavioral and organizational mechanisms. In this thesis, I studied the evolutionary ecology of the resistance of ant queens and workers to natural fungal pathogens. Mechanisms that increase within-colony genetic diversity, like polyandry and polygyny, decrease relatedness among colony mates, which reduces the strength of selection for the evolution and maintenance of altruistic behavior. A leading hypothesis posits that intracolonial genetic diversity is adaptive because it reduces the risk of pathogen transmission. In chapter 1, I examine individual resistance in ant workers of Formica selysi, a species that shows natural variation in colony queen number. I discuss how this variation might be beneficial to resist natural fungal pathogens in groups. Overall my results indicate that there is genetic variation for fungal resistance in workers, a requirement for the 'genetic diversity for pathogen resistance' hypothesis. However I was not able to detect direct evidence that group diversity improves the survival of focal ants or reduces pathogen transmission. Thus, although the coexistence of multiple queens increases the within-colony variance in worker resistance, it remains unclear whether it protects ant colonies from pathogens and whether it is comparable to polyandry in other social insects. Traditionally, it was thought that the immune system of invertebrates lacked memory and specificity. In chapter 2, I investigate individual immunity in ant queens and show that they may be able to adjust their pathogen defences in response to their current environment by means of immune priming, which bears similarities with the adaptive immunity of vertebrates. However, my results indicate that the expression of immune priming in ant queens may be influenced by factors like mating status, mating conditions or host species. In addition, I showed that mating increases pathogen resistance in çhe two ant species that I studied (F. selysi and Lasius niger). This raises the question of how ant queens invest heavily in both maintenance and reproduction, which I discuss in the context of the evolution of social organization. In chapter 3,1 investigate if transgenerational priming against a fungal pathogen protects the queen progeny. I failed to detect this effect, and discuss why the detection of transgenerational immune priming in ants is a difficult task. Overall, this thesis illustrates some of the individual and collective mechanisms that likely played a role in allowing ants to become one of the most diverse and ecologically successful groups of organisms. -- Les pathogènes représentent une menace pour tous les organismes, ce qui a engendré l'évolution d'une course aux armements. Les insectes sociaux sont un système intéressant permettant d'étudier les interactions hôtes-pathogènes, car leurs défenses dépendent de réponses aussi bien individuelles que collectives, et impliquent des mécanismes génétiques, physiologiques, comportementaux et organisationnels. Dans cette thèse, j'ai étudié l'écologie évolutive de la résistance des reines et des ouvrières de fourmis exposées à des champignons pathogènes. Les facteurs augmentant la diversité génétique à l'intérieur de la colonie, comme la polyandrie et la polygynie, diminuent la parenté, ce qui réduit la pression de sélection pour l'évolution et la maintenance des comportements altruistes. Une hypothèse dominante stipule que la diversité génétique à l'intérieur de la colonie est adaptative car elle réduit le risque de transmission des pathogènes. Dans le chapitre 1, nous examinons la résistance individuelle à des pathogènes fongiques chez les ouvrières de Formica selysi, une espèce présentant une variation naturelle dans le nombre de reines par colonie. Nous discutons aussi de la possibilité que ces variations individuelles augmentent la capacité du groupe à résister à des champignons pathogènes. Dans l'ensemble, nos résultats indiquent une variation génétique dans la résistance aux champignons chez les ouvrières, un prérequis à l'hypothèse que la diversité génétique du groupe augmente la résistance aux pathogènes. Cependant, nous n'avons pas pu détecter une preuve directe que la diversité du groupe augmente la survie de fourmis focales ou réduise la transmission des pathogènes. Ainsi, bien que la coexistence de plusieurs reines augmente la variance dans la résistance des ouvrières à l'intérieur de la colonie, la question de savoir si cela protège les colonies de fourmis contre les pathogènes et si cela est comparable à la polyandrie chez d'autres insectes sociaux reste ouverte. Traditionnellement, il était admis que le système immunitaire des invertébrés ne possédait pas de mémoire et était non-spécifique. Dans le chapitre 2, nous avons étudié l'immunité individuelle chez des reines de fourmis. Nous avons montré que les reines pourraient être capables d'ajuster leurs défenses contre les pathogènes en réponse à leur environnement, grâce à une pré-activation du système immunitaire (« immune priming ») ressemblant à l'immunité adaptative des vertébrés. Cependant, nos résultats indiquent que cette pré-activation du système immunitaire chez les reines dépend du fait d'être accouplée ou non, des conditions d'accouplement, ou de l'espèce. De plus, nous avons montré que l'accouplement augmente la résistance aux pathogènes chez les deux espèces que nous avons étudié (F. selysi et Lasius niger). Ceci pose la question de la capacité des reines à investir fortement aussi bien dans la maintenance que dans la reproduction, ce que nous discutons dans le contexte de l'évolution de l'organisation sociale. Dans le chapitre 3, nous étudions si la pré-activation trans-générationelle du système immunitaire [« trans-generational immune priming ») protège la progéniture de la reine contre un champignon pathogène. Nous n'avons par réussi à détecter cet effet, et discutons des raisons pour lesquelles la détection de la pré-activation trans-générationelle du système immunitaire chez les fourmis est une tâche difficile. Dans l'ensemble, cette thèse illustre quelques-uns des mécanismes individuels et collectifs qui ont probablement contribué à la diversité et à l'important succès écologique des fourmis.