850 resultados para ION-ACCELERATION
Resumo:
Large back-to-back correlations of observable fermion-anti-fermion pairs are predicted to appear, if the mass of the fermions is modified in a thermalized medium. The back-to-back correlations of protons and anti-protons are experimentally observable in ultra-relativistic heavy ion collisions, similarly to the Andreev reflection of elections off the boundary of a superconductor. While quantum statistics suppresses the probability of observing pairs of fermions with nearby momenta, the fermionic back-to-back correlations are positive and of similar strength to bosonic back-to-back correlations. (C) 2001 Elsevier B.V. B,V, All rights reserved.
Resumo:
We investigate the sensitivity of the heavy ion mode of the LHC to anomalous Higgs boson couplings to photons, H gamma gamma, through the analysis of the processes gamma gamma --> b (b) over bar and gamma gamma --> gamma gamma in peripheral heavy ion collisions. We suggest cuts to improve the signal over background ratio and determine the capability of LHC to impose bounds on anomalous couplings by searching for a Higgs boson signal in these modes. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
We discuss modified gravity which includes negative and positive powers of curvature and provides gravitational dark energy. It is shown that in GR plus a term containing a negative power of curvature, cosmic speed-up may be achieved while the effective phantom phase (with w less than -1) follows when such a term contains a fractional positive power of curvature. Minimal coupling with matter makes the situation more interesting: even 1/R theory coupled with the usual ideal fluid may describe the (effective phantom) dark energy. The account of the R(2) term (consistent modified gravity) may help to escape cosmic doomsday.
Resumo:
To estimate realistic cross sections in ultra peripheral heavy ion collisions we must remove effects of strong absorption. One method to eliminate these effects make use of a Glauber model calculation, where the nucleon-nucleon energy dependent cross sections at small impact parameter are suppressed. In another method we impose a geometrical cut on the minimal impact parameter of the nuclear collision ((b)min > R-1 + R-2, where R-i is the radius of ion 'i'). In this last case the effect of a possible nuclear radius dependence with the energy has not been considered in detail up to now. Here we introduce this effect showing that for final states with small invariant mass the effect is negligible. However when the final state has a relatively large invariant mass, e.g., an intermediate mass Higgs boson, the cross section can decrease up to 50%. (C) 2003 Published by Elsevier B.V.
Resumo:
We discuss processes leading to two photon final states in peripheral heavy ion collisions at RHIC. Due to the large photon luminosity we show that the continuum subprocess gamma gamma -> gamma gamma can be observed with a large number of events. We study this reaction when it is intermediated by a resonance made of quarks or gluons and discuss its interplay with the continuum process, verifying that in several cases the resonant process ovewhelms the continuum one. It is also investigated the possibility of observing a scalar resonance (the sigma meson) in this process. Assuming for the sigma, the mass and total decay width values recently reported by the E791 Collaboration we show that RHIC may detect this particle in its two photon decay mode if its partial photonic decay width is of the order of the ones discussed in the literature.
Resumo:
We discuss the role of dissipation in the explosive spinodal decomposition scenario of hadron production during the chiral transition after a high-energy heavy ion collision. We use a Langevin description inspired by microscopic nonequilibrium field theory results to perform real-time lattice simulations of the behavior of the chiral fields. We show that the effect of dissipation can be dramatic. Analytic results for the short-time dynamics are also presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We investigate the sensitivity of the heavy ion mode of the LHC to Higgs boson and Radion production via photon-photon fusion through the analysis of the processes gammagamma --> gammagamma, gammagamma --> b (b) over bar, and gammagamma --> gg in peripheral heavy ion collisions. We suggest cuts to improve the Higgs and Radion signal over standard model background ratio and determine the capability of LHC to detect these particles production. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
By incorporating the holographic principle in a time-depending Lambda-term cosmology, new physical bounds on the arbitrary parameters of the model can be obtained. Considering then the dark energy as a purely geometric entity, for which no equation of state has to be introduced, it is shown that the resulting range of allowed values for the parameters may explain both the coincidence problem and the universe accelerated expansion, without resorting to any kind of additional structures. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
We construct a phenomenological theory of gravitation based on a second order gauge formulation for the Lorentz group. The model presents a long-range modification for the gravitational field leading to a cosmological model provided with an accelerated expansion at recent times. We estimate the model parameters using observational data and verify that our estimative for the age of the Universe is of the same magnitude than the one predicted by the standard model. The transition from the decelerated expansion regime to the accelerated one occurs recently (at similar to 9.3 Gyr).
Resumo:
Squeezed correlations of particle-antiparticle pairs were predicted to exist if the hadron masses were modified in the hot and dense medium formed in high-energy heavy-ion collisions. Although well-established theoretically, they have not yet been observed experimentally. We suggest here a clear method to search for such a signal by analyzing the squeezed correlation functions in terms of measurable quantities. We illustrate this suggestion for simulated phi phi pairs at the Relativistic Heavy Ion Collider (RHIC) energies.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We investigate the sensitivity of the heavy ion mode of the LHC to Higgs boson and Radion production via photon-photon fusion through the analysis of the processes gg -> gg, gg ->, and gg ® ggin peripheral heavy ion collisions. We suggest cuts to improve the Higgs and Radion signal over standard model background ratio and determine the capability of LHC to detect these particles production.
Resumo:
We study the phenomenon of unlimited energy growth for a classical particle moving in the annular billiard. The model is considered under two different geometrical situations: static and breathing boundaries. We show that when the dynamics is chaotic for the static case, the introduction of a time-dependent perturbation allows that the particle experiences the phenomenon of Fermi acceleration even when the oscillations are periodic.
Resumo:
The unlimited energy growth ( Fermi acceleration) of a classical particle moving in a billiard with a parameter-dependent boundary oscillating in time is numerically studied. The shape of the boundary is controlled by a parameter and the billiard can change from a focusing one to a billiard with dispersing pieces of the boundary. The complete and simplified versions of the model are considered in the investigation of the conjecture that Fermi acceleration will appear in the time-dependent case when the dynamics is chaotic for the static boundary. Although this conjecture holds for the simplified version, we have not found evidence of Fermi acceleration for the complete model with a breathing boundary. When the breathing symmetry is broken, Fermi acceleration appears in the complete model.
Resumo:
The aim of this paper is to analyse the influence of the load centre of gravity on heavy vehicle acceleration. This analysis is done through a method in which a vehicle centre of gravity map is used. A model for the driving force is presented for bus, truck and tractor-semi trailer combinations. The proposed model takes into consideration the resistance forces (drag, rolling resistance, translation and rotation acceleration, climbing resistance) and the 4 X 2 traction system. The positions of the vehicle centre of gravity as a function of the position of the load centre of gravity are determined. The vehicle acceleration is calculated based on the position of the load centre of gravity. This study analyses the acceleration of one of the Mercedes-Benz do Brasil tractor-semitrailer vehicle. A comparison of the acceleration for different maximum adhesion coefficients and ramps are presented, showing new results. An example showing the variations of the load centre of gravity position with the acceleration time and distance is provided. The load centre of gravity position is important for vehicle safety and the efficiency and economy in the transportation of the load.