949 resultados para Hydraulic transmissions.
Resumo:
This paper addresses the problem of finding outage-optimal power control policies for wireless energy harvesting sensor (EHS) nodes with automatic repeat request (ARQ)-based packet transmissions. The power control policy of the EHS specifies the transmission power for each packet transmission attempt, based on all the information available at the EHS. In particular, the acknowledgement (ACK) or negative acknowledgement (NACK) messages received provide the EHS with partial information about the channel state. We solve the problem of finding an optimal power control policy by casting it as a partially observable Markov decision process (POMDP). We study the structure of the optimal power policy in two ways. First, for the special case of binary power levels at the EHS, we show that the optimal policy for the underlying Markov decision process (MDP) when the channel state is observable is a threshold policy in the battery state. Second, we benchmark the performance of the EHS by rigorously analyzing the outage probability of a general fixed-power transmission scheme, where the EHS uses a predetermined power level at each slot within the frame. Monte Carlo simulation results illustrate the performance of the POMDP approach and verify the accuracy of the analysis. They also show that the POMDP solutions can significantly outperform conventional ad hoc approaches.
Resumo:
This paper aims at extending the universal erosive burning law developed by two of the present authors from axi-symmetric internally burning grains to partly symmetric burning grains. This extension revolves around three dimensional flow calculations inside highly loaded grain geometry and benefiting from an observation that the flow gradients normal to the surface in such geometries have a smooth behavior along the perimeter of the grain. These are used to help identify the diameter that gives the same perimeter the characteristic dimension rather than a mean hydraulic diameter chosen earlier. The predictions of highly loaded grains from the newly chosen dimension in the erosive burning law show better comparison with measured pressure-time curves while those with mean hydraulic diameter definitely over-predict the pressures. (c) 2013 IAA. Published by Elsevier Ltd. All rights reserved.
Resumo:
The ultimate bearing capacity of strip foundations in the presence of inclined groundwater flow, considering both upward and downward flow directions, has been determined by using the lower bound finite-element limit analysis. A numerical solution has been generated for both smooth and rough footings placed on frictional soils. A correction factor (f gamma), which needs to be multiplied with the N gamma-term, has been computed to account for groundwater seepage. The variation of f gamma has been obtained as a function of the hydraulic gradient (i) for various inclinations of groundwater flow. For a given magnitude of i, there exists a certain critical inclination of the flow for which the value of f gamma is minimized. With an upward flow, for all flow inclinations, the magnitude of f gamma always reduces with an increase in the value of i. An example has also been provided to illustrate the application of the obtained results when designing foundations in the presence of groundwater seepage.
Resumo:
This paper deals with an experimental study of pressure-swirl hydraulic injector nozzles using non-intrusive optical techniques. Experiments were conducted to study atomization characteristics using two nozzles with different orifice diameters, 0.3 mm and 0.5 mm, and injection pressures, 0.3-3.5 Mpa, which correspond to Reynolds number (Re-p) = 7,000-45,000, depending on nozzle utilized. Three laser diagnostic techniques were utilized: Shadowgraph, PIV (Particle Image Velocimetry), and PDPA (Phase Doppler Particle Anemometry). Measurements made in the spray in both axial and radial directions indicate that velocity, average droplet diameter profiles, and spray dynamics are highly dependent on the nozzle characteristics and injection pressure. Limitations of these techniques in the different flow regimes, related to the primary and secondary breakups as well as coalescence, are provided. Results indicate that all three techniques provide similar results throughout the different regimes. Shadowgraph and PDPA were possible in the secondary atomization and coalescence regimes while PIV measurements could be made only at the end of secondary atomization and coalescence.
Resumo:
Variable speed operation of microhydro power plants is gaining popularity due to the benefits that accrue from their use and the development of suitable generator control systems. This paper highlights the benefits of variable speed systems over conventional systems and also proposes a simple emulator for hydraulic turbines that operate in variable speed fixed flow rate mode. The emulator consists of an uncontrolled separately excited DC motor with additional resistors and has performance characteristics similar to that of the hydraulic turbine.
Resumo:
This paper addresses the problem of finding optimal power control policies for wireless energy harvesting sensor (EHS) nodes with automatic repeat request (ARQ)-based packet transmissions. The EHS harvests energy from the environment according to a Bernoulli process; and it is required to operate within the constraint of energy neutrality. The EHS obtains partial channel state information (CSI) at the transmitter through the link-layer ARQ protocol, via the ACK/NACK feedback messages, and uses it to adapt the transmission power for the packet (re)transmission attempts. The underlying wireless fading channel is modeled as a finite state Markov chain with known transition probabilities. Thus, the goal of the power management policy is to determine the best power setting for the current packet transmission attempt, so as to maximize a long-run expected reward such as the expected outage probability. The problem is addressed in a decision-theoretic framework by casting it as a partially observable Markov decision process (POMDP). Due to the large size of the state-space, the exact solution to the POMDP is computationally expensive. Hence, two popular approximate solutions are considered, which yield good power management policies for the transmission attempts. Monte Carlo simulation results illustrate the efficacy of the approach and show that the approximate solutions significantly outperform conventional approaches.
Resumo:
The broadcast nature of the wireless medium jeopardizes secure transmissions. Cryptographic measures fail to ensure security when eavesdroppers have superior computational capability; however, it can be assured from information theoretic security approaches. We use physical layer security to guarantee non-zero secrecy rate in single source, single destination multi-hop networks with eavesdroppers for two cases: when eavesdropper locations and channel gains are known and when their positions are unknown. We propose a two-phase solution which consists of finding activation sets and then obtaining transmit powers subject to SINR constraints for the case when eavesdropper locations are known. We introduce methods to find activation sets and compare their performance. Necessary but reasonable approximations are made in power minimization formulations for tractability reasons. For scenarios with no eavesdropper location information, we suggest vulnerability region (the area having zero secrecy rate) minimization over the network. Our results show that in the absence of location information average number of eavesdroppers who have access to data is reduced.
Resumo:
The ultimate bearing capacity of strip foundations subjected to horizontal groundwater flow has been computed by making use of the stress characteristics method which is well known for its capability in solving quite accurately different stability problems in geotechnical engineering. The numerical solution has been generated both for smooth and rough footings placed on frictional soils. A correction factor (fγ) associated with Nγ term, to account for the existence of ground water flow, has been introduced. The variation of fγ has been obtained as a function of hydraulic gradient (i) for different values of soil frictional angle. The magnitude of fγ reduces continuously with an increase in the value of i.
Resumo:
Different medium access control (MAC) layer protocols, for example, IEEE 802.11 series and others are used in wireless local area networks. They have limitation in handling bulk data transfer applications, like video-on-demand, videoconference, etc. To avoid this problem a cooperative MAC protocol environment has been introduced, which enables the MAC protocol of a node to use its nearby nodes MAC protocol as and when required. We have found on various occasions that specified cooperative MAC establishes cooperative transmissions to send the specified data to the destination. In this paper we propose cooperative MAC priority (CoopMACPri) protocol which exploits the advantages of priority value given by the upper layers for selection of different paths to nodes running heterogeneous applications in a wireless ad hoc network environment. The CoopMACPri protocol improves the system throughput and minimizes energy consumption. Using a Markov chain model, we developed a model to analyse the performance of CoopMACPri protocol; and also derived closed-form expression of saturated system throughput and energy consumption. Performance evaluations validate the accuracy of the theoretical analysis, and also show that the performance of CoopMACPri protocol varies with the number of nodes. We observed that the simulation results and analysis reflects the effectiveness of the proposed protocol as per the specifications.
Resumo:
The uplift resistance of pipelines buried in sands, in the presence of inclined groundwater flow, considering both upward and downward flow directions, has been determined by using the lower bound finite elements limit analysis in conjunction with nonlinear optimization. A correction factor (f (gamma) ), which needs to be multiplied with the uplift factor (F (gamma) ), has been computed to account for groundwater seepage. The variation of f (gamma) has been obtained as a function of i(gamma (w) /gamma (sub) ) for different horizontal inclinations (theta) of groundwater flow; where i = absolute magnitude of hydraulic gradient along the direction of flow, gamma (w) is the unit weight of water and gamma (sub) is the submerged unit weight of soil mass. For a given magnitude of i, there exists a certain critical value of theta for which the magnitude of f (gamma) becomes the minimum. An example has also been presented to illustrate the application of the results obtained for designing pipelines in presence of groundwater seepage.
Resumo:
A new generator topology for microhydel power plants, capable of unsupervised operation, is proposed. While conventional microhydel plants operate at constant speed with switched ballast loads, the proposed generator, based on the wound rotor induction machine, operates at variable speed and does away with the need for ballast loads. This increases reliability and substantially decreases system costs and setup times. The proposed generator has a simplified decoupled control structure with stator-referenced voltage control similar to a conventional synchronous generator, and rotor-side frequency control that is facilitated by rotating electronics mounted on the rotor. While this paper describes an isolated plant, the topology can also be tailored for distributed generation enabling conversion of the available hydraulic power into useful electrical power when the grid is present, and supplying local loads in the event of grid outage.
Resumo:
Increasing nitrate concentrations in ground water is deleterious to human health as ingestion of such water can cause methemoglobinemia in infants and even cancer in adults (desirable limit for nitrate as NO3 - 45 mg/L, IS code 10500-1991). Excess nitrate concentrations in ground water is contributed by reason being disposal of sewage and excessive use of fertilizers. Though numerous technologies such as reverse osmosis, ion exchange, electro-dialysis, permeable reactive barriers using zerovalent iron etc exists, nitrate removal continues to be one of challenging issue as nitrate ion is highly mobile within the soil strata. The tapping the denitrification potential of soil denitrifiers which are inherently available in the soil matrix is the most sustainable approach to mitigate accumulation of nitrate in ground water. The insitu denitrification of sand and bentonite enhanced sand (bentonite content = 5%) in presence of easily assimilable organic carbon such as ethanol was studied. Batch studies showed that nitrate reduction by sand follows first order kinetics with a rate constant 5.3x10(-2) hr(-1) and rate constant 4.3 x 10(-2) hr(-1) was obtained for bentonite-enhanced sand (BS) at 25 degrees C. Filter columns (height = 5 cm and diameter = 8.2 cm) were constructed using sand and bentonite-enhanced sand as filter media. The filtration rate through both the filter columns was maintained at average value of 2.60 cm/h. The nitrate removal rates through both the filter media was assessed for solution containing 22.6 mg NO3-N/L concentrations while keeping C/N mass ratio as 3. For sand filter column, the nitrate removal efficiency reached the average value of 97.6% after passing 50 pore volumes of the nitrate solution. For bentonite-enhanced sand filter column, the average nitrate removal efficiency was 83.5%. The time required for effective operation for sand filter bed was 100 hours, while bentonite-enhanced sand filter bed did not require any maturation period as that of sand filter bed for effective performance because the presence of micropores in bentonite increases the hydraulic retention time of the solution inside the filter bed.
Resumo:
A first-principles study was carried out to investigate the stability of the crystal structure of beta-form belite (beta-C2S) substituted by Sr atoms as trace impurities for Ca atoms in CaOx polyhedra. The effect of the connection types of CaOx polyhedral, in the form of common-edge bond and common-face bond, upon the crystal stability is described. The Ca-Ca interatomic distance closely relates to the hydraulic activity of beta-C2S. The beta-C2S substituted by an Sr atom for Ca(1) atoms having seven Ca-O bonds is energetically more stable than that substituted by an Sr atom for Ca(2) atoms having eight Ca-O bonds. The Sr-doped beta-C2S having a common face bond with SrOx polyhedra is energetically more favorable and results in structural stability compared with that having a common edge bond with SrOx polyhedra.
Quick, Decentralized, Energy-Efficient One-Shot Max Function Computation Using Timer-Based Selection
Resumo:
In several wireless sensor networks, it is of interest to determine the maximum of the sensor readings and identify the sensor responsible for it. We propose a novel, decentralized, scalable, energy-efficient, timer-based, one-shot max function computation (TMC) algorithm. In it, the sensor nodes do not transmit their readings in a centrally pre-defined sequence. Instead, the nodes are grouped into clusters, and computation occurs over two contention stages. First, the nodes in each cluster contend with each other using the timer scheme to transmit their reading to their cluster-heads. Thereafter, the cluster-heads use the timer scheme to transmit the highest sensor reading in their cluster to the fusion node. One new challenge is that the use of the timer scheme leads to collisions, which can make the algorithm fail. We optimize the algorithm to minimize the average time required to determine the maximum subject to a constraint on the probability that it fails to find the maximum. TMC significantly lowers average function computation time, average number of transmissions, and average energy consumption compared to approaches proposed in the literature.
Resumo:
Saltwater intrusion into coastal aquifers is a global issue, exacerbated by increasing demands for freshwater in coastal regions. This study investigates into the parametric analysis on saltwater intrusion in a conceptual, coastal, unconfined aquifer considering wide range of freshwater draft and anticipated sea level rise. The saltwater intrusion under various circumstances is simulated through parametric studies using MODFLOW, MT3DMS and SEAWAT. The MODFLOW is used to simulate the groundwater flow system under changing hydro-dynamics in coastal aquifer. To simulate solute transport MT3DMS and SEAWAT is used. The saltwater intrusion process has direct bearing on hydraulic conductivity and inversely related to porosity. It may also be noted that increase in recharge rate considered in the study does not have much influence on saltwater intrusion. Effect of freshwater draft at locations beyond half of the width of the aquifer considered has marginal effect and hence can be considered as safe zone for freshwater withdrawals. Due to the climate change effect, the anticipated rise in sea level of 0.88 m over a century is considered in the investigation. This causes increase in salinity intrusion by about 25%. The combined effect of sea level rise and freshwater draft (C) 2015 The Authors. Published by Elsevier B.V.