942 resultados para Human skeletal-muscle


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: We aimed to evaluate the effects of resistance exercise (RE) and leucine (LEU) supplementation on dexamethasone (DEXA)-induced muscle atrophy and insulin resistance. Methods: Male Wistar rats were randomly divided into DEXA(DEX), DEXA + RE (DEX-RE), DEXA + LEU (DEX-LEU), and DEXA + RE + LEU (DEX-RE-LEU) groups. Each group received DEXA 5 mg . kg(-1) . d(-1) for 7 d from drinking water and were pair-fed to the DEX group; LEU-supplemented groups received 0.135 g . kg(-1) . d(-1) through gavage for 7 d; the RE protocol was based on three sessions of squat-type exercise composed by three sets of 10 repetitions at 70% of maximal voluntary strength capacity. Results: The plantaris mass was significantly greater in both trained groups compared with the non-trained groups. Muscle cross-sectional area and fiber areas did not differ between groups. Both trained groups displayed significant increases in the number of intermediated fibers (IIa/IIx), a decreased number of fast-twitch fibers (IIb), an increased ratio of the proteins phospho(Ser2448)/ total mammalian target of rapamycin and phospho(Thr389)/total 70-kDa ribosomal protein S6 kinase. and a decreased ratio of phospho(Ser253)/total Forkhead box protein-3a. Plasma glucose was significantly increased in the DEX-LEU group compared with the DEX group and RE significantly decreased hyperglycemia. The DEX-LEU group displayed decreased glucose transporter-4 translocation compared with the DEX group and RE restored this response. LEU supplementation worsened insulin sensitivity and did not attenuate muscle wasting in rats treated with DEXA. Conversely, RE modulated glucose homeostasis and fiber type transition in the plantaris muscle. Conclusion: Resistance exercise but not LEU supplementation promoted fiber type transition and improved glucose homeostasis in DEXA-treated rats. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Increased plasma concentrations of free fatty acids (FFA) can lead to insulin resistance in skeletal muscle, impaired effects on mitochondrial function, including uncoupling of oxidative phosphorylation and decrease of endogenous antioxidant defenses. Nitric oxide (NO) is a highly diffusible gas that presents a half-life of 5-10 seconds and is involved in several physiological and pathological conditions. The effects of palmitic acid on nitric oxide (NO) production by rat skeletal muscle cells and the possible mechanism involved were investigated. Methods: Primary cultured rat skeletal muscle cells were treated with palmitic acid and NO production was assessed by nitrite measurement (Griess method) and 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Nuclear factor-kappa B (NF-kappa B) activation was evaluated by electrophoretic mobility shift assay and iNOS protein content by western blotting. Results: Palmitic acid treatment increased nitric oxide production. This effect was abolished by treatment with NOS inhibitors, L-nitro-arginine (LNA) and L-nitro-arginine methyl esther (L-NAME). NF-kappa B activation and iNOS content were increased due to palmitic acid treatment. The participation of superoxide on nitric oxide production was investigated by incubating the cells with DAF-2-DA in the presence or absence of palmitic acid, a superoxide generator system (X-XO), a mixture of NOS inhibitors and SOD-PEG (superoxide dismutase linked to polyethylene glycol). Palmitic acid and X-XO system increased NO production and this effect was abolished when cells were treated with NOS inhibitors and also with SOD-PEG. Conclusions: In summary, palmitic acid stimulates NO production in cultured skeletal muscle cells through production of superoxide, nuclear factor-kappa B activation and increase of iNOS protein content. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In animal and clinical trials low-level laser therapy (LLLT) using red, infrared and mixed wavelengths has been shown to delay the development of skeletal muscle fatigue. However, the parameters employed in these studies do not allow a conclusion as to which wavelength range is better in delaying the development of skeletal muscle fatigue. With this perspective in mind, we compared the effects of red and infrared LLLT on skeletal muscle fatigue. A randomized double-blind placebo-controlled crossover trial was performed in ten healthy male volunteers. They were treated with active red LLLT, active infrared LLLT (660 or 830 nm, 50 mW, 17.85 W/cm(2), 100 s irradiation per point, 5 J, 1,785 J/cm(2) at each point irradiated, total 20 J irradiated per muscle) or an identical placebo LLLT at four points of the biceps brachii muscle for 3 min before exercise (voluntary isometric elbow flexion for 60 s). The mean peak force was significantly greater (p < 0.05) following red (12.14%) and infrared LLLT (14.49%) than following placebo LLLT, and the mean average force was also significantly greater (p < 0.05) following red (13.09%) and infrared LLLT (13.24%) than following placebo LLLT. There were no significant differences in mean average force or mean peak force between red and infrared LLLT. We conclude that both red than infrared LLLT are effective in delaying the development skeletal muscle fatigue and in enhancement of skeletal muscle performance. Further studies are needed to identify the specific mechanisms through which each wavelength acts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quercetin is a potent anti-inflammatory flavonoid, but its capacity to modulate insulin sensitivity in obese insulin resistant conditions is unknown. This study investigated the effect of quercetin treatment upon insulin sensitivity of ob/ob mice and its potential molecular mechanisms. Obese ob/ob mice were treated with quercetin for 10 weeks, and L6 myotubes were treated with either palmitate or tumor necrosis factor-alpha (TNF alpha) plus quercetin. Cells and muscles were processed for analysis of glucose transporter 4 (GLUT4), TNF alpha and inducible nitric oxide synthase (iNOS) expression, and c-Jun N-terminal kinase (JNK) and inhibitor of nuclear factor-kappa B (NF-kappa B) kinase (I kappa K) phosphorylation. Myotubes were assayed for glucose uptake and NF-kappa B translocation. Chromatin immunoprecipitation assessed NF-kappa B binding to GLUT4 promoter. Quercetin treatment improved whole body insulin sensitivity by increasing GLUT4 expression and decreasing JNK phosphorylation, and TNF alpha and iNOS expression in skeletal muscle. Quercetin suppressed palmitate-induced upregulation of TNF alpha and iNOS and restored normal levels of GLUT4 in myotubes. In parallel, quercetin suppressed TNF alpha-induced reduction of glucose uptake in myotubes. Nuclear accumulation of NF-kappa B in myotubes and binding of NF-kappa B to GLUT4 promoter in muscles of ob/ob mice were also reduced by quercetin. We demonstrated that quercetin decreased the inflammatory status in skeletal muscle of obese mice and in L6 myotubes. This effect was followed by increased muscle GLUT4, with parallel improvement of insulin sensitivity. These results point out quercetin as a putative strategy to manage inflammatory-related insulin resistance. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background The beneficial actions of exercise training on lipid, glucose and energy metabolism and insulin sensitivity appear to be in part mediated by PGC-1α. Previous studies have shown that spontaneously exercised rats show at rest enhanced responsiveness to exogenous insulin, lower plasma insulin levels and increased skeletal muscle insulin sensitivity. This study was initiated to examine the functional interaction between exercise-induced modulation of skeletal muscle and liver PGC-1α protein expression, whole body insulin sensitivity, and circulating FFA levels as a measure of whole body fatty acid (lipid) metabolism. Methods Two groups of male Wistar rats (2 Mo of age, 188.82 ± 2.77 g BW) were used in this study. One group consisted of control rats placed in standard laboratory cages. Exercising rats were housed individually in cages equipped with running wheels and allowed to run at their own pace for 5 weeks. At the end of exercise training, insulin sensitivity was evaluated by comparing steady-state plasma glucose (SSPG) concentrations at constant plasma insulin levels attained during the continuous infusion of glucose and insulin to each experimental group. Subsequently, soleus and plantaris muscle and liver samples were collected and quantified for PGC-1α protein expression by Western blotting. Collected blood samples were analyzed for glucose, insulin and FFA concentrations. Results Rats housed in the exercise wheel cages demonstrated almost linear increases in running activity with advancing time reaching to maximum value around 4 weeks. On an average, the rats ran a mean (Mean ± SE) of 4.102 ± 0.747 km/day and consumed significantly more food as compared to sedentary controls (P < 0.001) in order to meet their increased caloric requirement. Mean plasma insulin (P < 0.001) and FFA (P < 0.006) concentrations were lower in the exercise-trained rats as compared to sedentary controls. Mean steady state plasma insulin (SSPI) and glucose (SSPG) concentrations were not significantly different in sedentary control rats as compared to exercise-trained animals. Plantaris PGC-1α protein expression increased significantly from a 1.11 ± 0.12 in the sedentary rats to 1.74 ± 0.09 in exercising rats (P < 0.001). However, exercise had no effect on PGC-1α protein content in either soleus muscle or liver tissue. These results indicate that exercise training selectively up regulates the PGC-1α protein expression in high-oxidative fast skeletal muscle type such as plantaris muscle. Conclusion These data suggest that PGC-1α most likely plays a restricted role in exercise-mediated improvements in insulin resistance (sensitivity) and lowering of circulating FFA levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin resistance condition is associated to the development of several syndromes, such as obesity, type 2 diabetes mellitus and metabolic syndrome. Although the factors linking insulin resistance to these syndromes are not precisely defined yet, evidence suggests that the elevated plasma free fatty acid (FFA) level plays an important role in the development of skeletal muscle insulin resistance. Accordantly, in vivo and in vitro exposure of skeletal muscle and myocytes to physiological concentrations of saturated fatty acids is associated with insulin resistance condition. Several mechanisms have been postulated to account for fatty acids-induced muscle insulin resistance, including Randle cycle, oxidative stress, inflammation and mitochondrial dysfunction. Here we reviewed experimental evidence supporting the involvement of each of these propositions in the development of skeletal muscle insulin resistance induced by saturated fatty acids and propose an integrative model placing mitochondrial dysfunction as an important and common factor to the other mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: Background: The alkaline version of the single-cell gel (comet) assay is a useful method for quantifying DNA damage. Although some studies on chronic and acute effects of exercise on DNA damage measured by the comet assay have been performed, it is unknown if an aerobic training protocol with intensity, volume, and load clearly defined will improve performance without leading to peripheral blood cell DNA damage. In addition, the effects of overtraining on DNA damage are unknown. Therefore, this study aimed to examine the effects of aerobic training and overtraining on DNA damage in peripheral blood and skeletal muscle cells in Swiss mice. To examine possible changes in these parameters with oxidative stress, we measured reduced glutathione (GSH) levels in total blood, and GSH levels and lipid peroxidation in muscle samples. Results: Performance evaluations (i.e., incremental load and exhaustive tests) showed significant intra and inter-group differences. The overtrained (OTR) group showed a significant increase in the percentage of DNA in the tail compared with the control (C) and trained (TR) groups. GSH levels were significantly lower in the OTR group than in the C and TR groups. The OTR group had significantly higher lipid peroxidation levels compared with the C and TR groups. Conclusions Aerobic and anaerobic performance parameters can be improved in training at maximal lactate steady state during 8 weeks without leading to DNA damage in peripheral blood and skeletal muscle cells or to oxidative stress in skeletal muscle cells. However, overtraining induced by downhill running training sessions is associated with DNA damage in peripheral blood and skeletal muscle cells, and with oxidative stress in skeletal muscle cells and total blood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study we have compared the effects of leucine supplementation and its metabolite β-hydroxy-β-methyl butyrate (HMB) on the ubiquitin-proteasome system and the PI3K/Akt pathway during two distinct atrophic conditions, hindlimb immobilization and dexamethasone treatment. Leucine supplementation was able to minimize the reduction in rat soleus mass driven by immobilization. On the other hand, leucine supplementation was unable to provide protection against soleus mass loss in dexamethasone treated rats. Interestingly, HMB supplementation was unable to provide protection against mass loss in all treatments. While solely fiber type I cross sectional area (CSA) was protected in immobilized soleus of leucine-supplemented rats, none of the fiber types were protected by leucine supplementation in rats under dexamethasone treatment. In addition and in line with muscle mass results, HMB treatment did not attenuate CSA decrease in all fiber types against either immobilization or dexamethasone treatment. While leucine supplementation was able to minimize increased expression of both Mafbx/Atrogin and MuRF1 in immobilized rats, leucine was only able to minimize Mafbx/Atrogin in dexamethasone treated rats. In contrast, HMB was unable to restrain the increase in those atrogenes in immobilized rats, but in dexamethasone treated rats, HMB minimized increased expression of Mafbx/Atrogin. The amount of ubiquitinated proteins, as expected, was increased in immobilized and dexamethasone treated rats and only leucine was able to block this increase in immobilized rats but not in dexamethasone treated rats. Leucine supplementation maintained soleus tetanic peak force in immobilized rats at normal level. On the other hand, HMB treatment failed to maintain tetanic peak force regardless of treatment. The present data suggested that the anti-atrophic effects of leucine are not mediated by its metabolite HMB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] As a consequence to hypobaric hypoxic exposure skeletal muscle atrophy is often reported. The underlying mechanism has been suggested to involve a decrease in protein synthesis in order to conserve O(2). With the aim to challenge this hypothesis, we applied a primed, constant infusion of 1-(13)C-leucine in nine healthy male subjects at sea level and subsequently at high-altitude (4559 m) after 7-9 days of acclimatization. Physical activity levels and food and energy intake were controlled prior to the two experimental conditions with the aim to standardize these confounding factors. Blood samples and expired breath samples were collected hourly during the 4 hour trial and vastus lateralis muscle biopsies obtained at 1 and 4 hours after tracer priming in the overnight fasted state. Myofibrillar protein synthesis rate was doubled; 0.041+/-0.018 at sea-level to 0.080+/-0.018%hr(-1) (p<0.05) when acclimatized to high altitude. The sarcoplasmic protein synthesis rate was in contrast unaffected by altitude exposure; 0.052+/-0.019 at sea-level to 0.059+/-0.010%hr(-1) (p>0.05). Trends to increments in whole body protein kinetics were seen: Degradation rate elevated from 2.51+/-0.21 at sea level to 2.73+/-0.13 micromolkg(-1)min(-1) (p = 0.05) at high altitude and synthesis rate similar; 2.24+/-0.20 at sea level and 2.43+/-0.13 micromolkg(-1)min(-1) (p>0.05) at altitude. We conclude that whole body amino acid flux is increased due to an elevated protein turnover rate. Resting skeletal muscle myocontractile protein synthesis rate was concomitantly elevated by high-altitude induced hypoxia, whereas the sarcoplasmic protein synthesis rate was unaffected by hypoxia. These changed responses may lead to divergent adaptation over the course of prolonged exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] BACKGROUND: A classic, unresolved physiological question is whether central cardiorespiratory and/or local skeletal muscle circulatory factors limit maximal aerobic capacity (VO2max) in humans. Severe heat stress drastically reduces VO2max, but the mechanisms have never been studied. METHODS AND RESULTS: To determine the main contributing factor that limits VO2max with and without heat stress, we measured hemodynamics in 8 healthy males performing intense upright cycling exercise until exhaustion starting with either high or normal skin and core temperatures (+10 degrees C and +1 degrees C). Heat stress reduced VO2max, 2-legged VO2, and time to fatigue by 0.4+/-0.1 L/min (8%), 0.5+/-0.2 L/min (11%), and 2.2+/-0.4 minutes (28%), respectively (all P<0.05), despite heart rate and core temperature reaching similar peak values. However, before exhaustion in both heat stress and normal conditions, cardiac output, leg blood flow, mean arterial pressure, and systemic and leg O2 delivery declined significantly (all 5% to 11%, P<0.05), yet arterial O2 content and leg vascular conductance remained unchanged. Despite increasing leg O2 extraction, leg VO2 declined 5% to 6% before exhaustion in both heat stress and normal conditions, accompanied by enhanced muscle lactate accumulation and ATP and creatine phosphate hydrolysis. CONCLUSIONS: These results demonstrate that in trained humans, severe heat stress reduces VO2max by accelerating the declines in cardiac output and mean arterial pressure that lead to decrements in exercising muscle blood flow, O2 delivery, and O2 uptake. Furthermore, the impaired systemic and skeletal muscle aerobic capacity that precedes fatigue with or without heat stress is largely related to the failure of the heart to maintain cardiac output and O2 delivery to locomotive muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscle possesses the remarkable capacity to complete a rapid and extensive regeneration, even following severe damage. The regenerative ability of skeletal muscle relies on Satellite Cells (SCs), a population of muscle specific adult stem cells. However, during aging or under several pathological conditions, the ability of skeletal muscle to fully regenerated is compromised. Here, a morphological and molecular study on SCs from patients affected by ALS is described. Moreover, the role of the cell cycle regulator P16Ink4a during skeletal muscle regeneration and aging has been investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All currently available human skeletal remains from the Wadi Howar (Eastern Sahara, Sudan) were employed in an anthropological study. The study’s first aim was to describe this unique 5th to 2nd millennium BCE material, which comprised representatives of all three prehistoric occupation phases of the region. Detecting diachronic differences in robusticity, occupational stress levels and health within the spatially, temporally and culturally heterogeneous sample was its second objective. The study’s third goal was to reveal metric and non-metric affinities between the different parts of the series and between the Wadi Howar material and other relevant prehistoric as well as modern African populations. rnThe reconstruction and comprehensive osteological analysis of 23 as yet unpublished individuals, the bulk of the Wadi Howar series, constituted the first stage of the study. The analyses focused on each individual’s in situ position, state of preservation, sex, age at death, living height, living weight, physique, biological ancestry, epigenetic traits, robusticity, occupational stress markers, health and metric as well as morphological characteristics. Building on the results of these efforts and the re-examination of the rest of the material, the Wadi Howar series as a whole, altogether 32 individuals, could be described. rnA wide variety of robusticity, occupational stress and health variables was evaluated. The pre-Leiterband (hunter-gatherer-fisher/hunter-gatherer-fisher-herder) and the Leiterband (herder-gatherer) data of over a third of these variables differed statistically significantly or in tendency from each other. The Leiterband sub-sample was characterised by higher enamel hypoplasia frequencies, lower mean ages at death and less pronounced expressions of occupational stress traits. This pattern was interpreted as evidence that the adoption and intensification of animal husbandry did probably not constitute reactions to worsening conditions. Apart from that, the relevant observations, noteworthy tendencies and significant differences were explained as results of a broader spectrum of pre-Leiterband subsistence activities and the negative side effects of the increasingly specialised herder-gatherer economy of the Leiterband phase. rnUsing only the data which could actually be collected from it, multiple, separate, individualised discriminant function analyses were carried out for each Wadi Howar skeleton to determine which prehistoric and which modern comparative sample it was most similar to. The results of all individual analyses were then summarised and examined as a whole. Thus it became possible to draw conclusions about the affinities the Wadi Howar material shared with prehistoric as well as modern populations and to answer questions concerning the diachronic links between the Wadi Howar’s prehistoric populations. When the Wadi Howar remains were positioned in the context of the selected prehistoric (Jebel Sahaba/Tushka, A-Group, Malian Sahara) and modern comparative samples (Southern Sudan, Chad, Mandinka, Somalis, Haya) in this fashion three main findings emerged. Firstly, the series as a whole displayed very strong affinities with the prehistoric sample from the Malian Sahara (Hassi el Abiod, Kobadi, Erg Ine Sakane, etc.) and the modern material from Southern Sudan and, to a lesser extent, Chad. Secondly, the pre-Leiterband and the Leiterband sub-sample were closer to the prehistoric Malian as well as the modern Southern Sudanese material than they were to each other. Thirdly, the group of pre-Leiterband individuals approached the Late Pleistocene sample from Jebel Sahaba/Tushka under certain circumstances. A theory offering explanations for these findings was developed. According to this theory, the entire prehistoric population of the Wadi Howar belonged to a Saharo-Nilotic population complex. The Jebel Sahaba/Tushka population constituted an old Nilotic and the early population of the Malian Sahara a younger Saharan part of this complex. The pre-Leiterband groups probably colonised the Wadi Howar from the east, either during or soon after the original Saharo-Nilotic expansion. Unlike the pre-Leiterband groups, the Leiterband people originated somewhere west of the Wadi Howar. They entered the region in the context of a later, secondary Saharo-Nilotic expansion. In the process, the incoming Leiterband groups absorbed many members of the Wadi Howar’s older pre-Leiterband population. The increasing aridification of the Wadi Howar region ultimately forced its prehistoric inhabitants to abandon the wadi. Most of them migrated south and west. They, or groups closely related to them, probably were the ancestors of the majority of the Nilo-Saharan-speaking pastoralists of modern-day Southern Sudan and Eastern Chad.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term disturbance of the calcium homeostasis of motor endplates (MEPs) causes necrosis of muscle fibers. The onset of morphological changes in response to this disturbance, particularly in relation to the fiber type, is presently unknown. Omohyoid muscles of mice were incubated for 1-30 minutes in 0.1 mM carbachol, an acetylcholine agonist that causes an inward calcium current. In these muscles, the structural changes of the sarcomeres and the MEP sarcoplasm were evaluated at the light- and electron-microscopic level. Predominantly in type I fibers, carbachol incubation resulted in strong contractures of the sarcomeres underlying the MEPs. Owing to these contractures, the usual beret-like form of the MEP-associated sarcoplasm was deformed into a mushroom-like body. Consequently, the squeezed MEPs partially overlapped the adjacent muscle fiber segments. There are no signs of contractures below the MEPs if muscles were incubated in carbachol in calcium-free Tyrode's solution. Carbachol induced inward calcium current and produced fiber-type-specific contractures. This finding points to differences in the handling of calcium in MEPs. Possible mechanisms for these fiber-type-specific differences caused by carbachol-induced calcium entry are assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In skeletal muscle of patients with clinically diagnosed statin-associated myopathy, discrete signs of structural damage predominantly localize to the T-tubular region and are suggestive of a calcium leak. The impact of statins on skeletal muscle of non-myopathic patients is not known. We analyzed the expression of selected genes implicated in the molecular regulation of calcium and membrane repair, in lipid homeostasis, myocyte remodeling and mitochondrial function. Microscopic and gene expression analyses were performed using validated TaqMan custom arrays on skeletal muscle biopsies of 72 age-matched subjects who were receiving statin therapy (n = 38), who had discontinued therapy due to statin-associated myopathy (n = 14), and who had never undergone statin treatment (n = 20). In skeletal muscle, obtained from statin-treated, non-myopathic patients, statins caused extensive changes in the expression of genes of the calcium regulatory and the membrane repair machinery, whereas the expression of genes responsible for mitochondrial function or myocyte remodeling was unaffected. Discontinuation of treatment due to myopathic symptoms led to a normalization of gene expression levels, the genes encoding the ryanodine receptor 3, calpain 3, and dystrophin being the most notable exceptions. Hence, even in clinically asymptomatic (non-myopathic) patients, statin therapy leads to an upregulation in the expression of genes that are concerned with skeletal muscle regulation and membrane repair.