734 resultados para Howell, Timothy


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use an empirical statistical model to demonstrate significant skill in making extended-range forecasts of the monthly-mean Arctic Oscillation (AO). Forecast skill derives from persistent circulation anomalies in the lowermost stratosphere and is greatest during boreal winter. A comparison to the Southern Hemisphere provides evidence that both the time scale and predictability of the AO depend on the presence of persistent circulation anomalies just above the tropopause. These circulation anomalies most likely affect the troposphere through changes to waves in the upper troposphere, which induce surface pressure changes that correspond to the AO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have argued that the autocorrelation of the winter North Atlantic Oscillation (NAO) index provides evidence of unusually persistent intraseasonal dynamics. We demonstrate that the autocorrelation on intraseasonal time-scales of 10–30 days is sensitive to the presence of interannual variability, part of which arises from the sampling of intraseasonal variability and the remainder of which we consider to be “externally forced”. Modelling the intraseasonal variability of the NAO as a red noise process we estimate, for winter, ~70% of the interannual variability is externally forced, whereas for summer sampling accounts for almost all of the interannual variability. Correcting for the externally forced interannual variability has a major impact on the autocorrelation function for winter. When externally forced interannual variability is taken into account the intrinsic persistence of the NAO is very similar in summer and winter (~5 days). This finding has implications for understanding the dynamics of the NAO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Faced by the realities of a changing climate, decision makers in a wide variety of organisations are increasingly seeking quantitative predictions of regional and local climate. An important issue for these decision makers, and for organisations that fund climate research, is what is the potential for climate science to deliver improvements - especially reductions in uncertainty - in such predictions? Uncertainty in climate predictions arises from three distinct sources: internal variability, model uncertainty and scenario uncertainty. Using data from a suite of climate models we separate and quantify these sources. For predictions of changes in surface air temperature on decadal timescales and regional spatial scales, we show that uncertainty for the next few decades is dominated by sources (model uncertainty and internal variability) that are potentially reducible through progress in climate science. Furthermore, we find that model uncertainty is of greater importance than internal variability. Our findings have implications for managing adaptation to a changing climate. Because the costs of adaptation are very large, and greater uncertainty about future climate is likely to be associated with more expensive adaptation, reducing uncertainty in climate predictions is potentially of enormous economic value. We highlight the need for much more work to compare: a) the cost of various degrees of adaptation, given current levels of uncertainty; and b) the cost of new investments in climate science to reduce current levels of uncertainty. Our study also highlights the importance of targeting climate science investments on the most promising opportunities to reduce prediction uncertainty.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines to what extent crops and their environment should be viewed as a coupled system. Crop impact assessments currently use climate model output offline to drive process-based crop models. However, in regions where local climate is sensitive to land surface conditions more consistent assessments may be produced with the crop model embedded within the land surface scheme of the climate model. Using a recently developed coupled crop–climate model, the sensitivity of local climate, in particular climate variability, to climatically forced variations in crop growth throughout the tropics is examined by comparing climates simulated with dynamic and prescribed seasonal growth of croplands. Interannual variations in land surface properties associated with variations in crop growth and development were found to have significant impacts on near-surface fluxes and climate; for example, growing season temperature variability was increased by up to 40% by the inclusion of dynamic crops. The impact was greatest in dry years where the response of crop growth to soil moisture deficits enhanced the associated warming via a reduction in evaporation. Parts of the Sahel, India, Brazil, and southern Africa were identified where local climate variability is sensitive to variations in crop growth, and where crop yield is sensitive to variations in surface temperature. Therefore, offline seasonal forecasting methodologies in these regions may underestimate crop yield variability. The inclusion of dynamic crops also altered the mean climate of the humid tropics, highlighting the importance of including dynamical vegetation within climate models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prediction of climate variability and change requires the use of a range of simulation models. Multiple climate model simulations are needed to sample the inherent uncertainties in seasonal to centennial prediction. Because climate models are computationally expensive, there is a tradeoff between complexity, spatial resolution, simulation length, and ensemble size. The methods used to assess climate impacts are examined in the context of this trade-off. An emphasis on complexity allows simulation of coupled mechanisms, such as the carbon cycle and feedbacks between agricultural land management and climate. In addition to improving skill, greater spatial resolution increases relevance to regional planning. Greater ensemble size improves the sampling of probabilities. Research from major international projects is used to show the importance of synergistic research efforts. The primary climate impact examined is crop yield, although many of the issues discussed are relevant to hydrology and health modeling. Methods used to bridge the scale gap between climate and crop models are reviewed. Recent advances include large-area crop modeling, quantification of uncertainty in crop yield, and fully integrated crop–climate modeling. The implications of trends in computer power, including supercomputers, are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new field of study, “decadal prediction,” is emerging in climate science. Decadal prediction lies between seasonal/interannual forecasting and longer-term climate change projections, and focuses on time-evolving regional climate conditions over the next 10–30 yr. Numerous assessments of climate information user needs have identified this time scale as being important to infrastructure planners, water resource managers, and many others. It is central to the information portfolio required to adapt effectively to and through climatic changes. At least three factors influence time-evolving regional climate at the decadal time scale: 1) climate change commitment (further warming as the coupled climate system comes into adjustment with increases of greenhouse gases that have already occurred), 2) external forcing, particularly from future increases of greenhouse gases and recovery of the ozone hole, and 3) internally generated variability. Some decadal prediction skill has been demonstrated to arise from the first two of these factors, and there is evidence that initialized coupled climate models can capture mechanisms of internally generated decadal climate variations, thus increasing predictive skill globally and particularly regionally. Several methods have been proposed for initializing global coupled climate models for decadal predictions, all of which involve global time-evolving three-dimensional ocean data, including temperature and salinity. An experimental framework to address decadal predictability/prediction is described in this paper and has been incorporated into the coordinated Coupled Model Intercomparison Model, phase 5 (CMIP5) experiments, some of which will be assessed for the IPCC Fifth Assessment Report (AR5). These experiments will likely guide work in this emerging field over the next 5 yr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of Research Theme 4 (RT4) was to advance understanding of the basic science issues at the heart of the ENSEMBLES project, focusing on the key processes that govern climate variability and change, and that determine the predictability of climate. Particular attention was given to understanding linear and non-linear feedbacks that may lead to climate surprises,and to understanding the factors that govern the probability of extreme events. Improved understanding of these issues will contribute significantly to the quantification and reduction of uncertainty in seasonal to decadal predictions and projections of climate change. RT4 exploited the ENSEMBLES integrations (stream 1) performed in RT2A as well as undertaking its own experimentation to explore key processes within the climate system. It was working at the cutting edge of problems related to climate feedbacks, the interaction between climate variability and climate change � especially how climate change pertains to extreme events, and the predictability of the climate system on a range of time-scales. The statisticalmethodologies developed for extreme event analysis are new and state-of-the-art. The RT4-coordinated experiments, which have been conducted with six different atmospheric GCMs forced by common timeinvariant sea surface temperature (SST) and sea-ice fields (removing some sources of inter-model variability), are designed to help to understand model uncertainty (rather than scenario or initial condition uncertainty) in predictions of the response to greenhouse-gas-induced warming. RT4 links strongly with RT5 on the evaluation of the ENSEMBLES prediction system and feeds back its results to RT1 to guide improvements in the Earth system models and, through its research on predictability, to steer the development of methods for initialising the ensembles

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Under global warming, the predicted intensification of the global freshwater cycle will modify the net freshwater flux at the ocean surface. Since the freshwater flux maintains ocean salinity structures, changes to the density-driven ocean circulation are likely. A modified ocean circulation could further alter the climate, potentially allowing rapid changes, as seen in the past. The relevant feedback mechanisms and timescales are poorly understood in detail, however, especially at low latitudes where the effects of salinity are relatively subtle. In an attempt to resolve some of these outstanding issues, we present an investigation of the climate response of the low-latitude Pacific region to changes in freshwater forcing. Initiated from the present-day thermohaline structure, a control run of a coupled ocean-atmosphere general circulation model is compared with a perturbation run in which the net freshwater flux is prescribed to be zero over the ocean. Such an extreme experiment helps to elucidate the general adjustment mechanisms and their timescales. The atmospheric greenhouse gas concentrations are held constant, and we restrict our attention to the adjustment of the upper 1,000 m of the Pacific Ocean between 40°N and 40°S, over 100 years. In the perturbation run, changes to the surface buoyancy, near-surface vertical mixing and mixed-layer depth are established within 1 year. Subsequently, relative to the control run, the surface of the low-latitude Pacific Ocean in the perturbation run warms by an average of 0.6°C, and the interior cools by up to 1.1°C, after a few decades. This vertical re-arrangement of the ocean heat content is shown to be achieved by a gradual shutdown of the heat flux due to isopycnal (i.e. along surfaces of constant density) mixing, the vertical component of which is downwards at low latitudes. This heat transfer depends crucially upon the existence of density-compensating temperature and salinity gradients on isopycnal surfaces. The timescale of the thermal changes in the perturbation run is therefore set by the timescale for the decay of isopycnal salinity gradients in response to the eliminated freshwater forcing, which we demonstrate to be around 10-20 years. Such isopycnal heat flux changes may play a role in the response of the low-latitude climate to a future accelerated freshwater cycle. Specifically, the mechanism appears to represent a weak negative sea surface temperature feedback, which we speculate might partially shield from view the anthropogenically-forced global warming signal at low latitudes. Furthermore, since the surface freshwater flux is shown to play a role in determining the ocean's thermal structure, it follows that evaporation and/or precipitation biases in general circulation models are likely to cause sea surface temperature biases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the twentieth century sea surface temperatures in the Atlantic Ocean exhibited prominent multidecadal variations. The source of such variations has yet to be rigorously established—but the question of their impact on climate can be investigated. Here we report on a set of multimodel experiments to examine the impact of patterns of warming in the North Atlantic, and cooling in the South Atlantic, derived from observations, that is characteristic of the positive phase of the Atlantic Multidecadal Oscillation (AMO). The experiments were carried out with six atmospheric General Circulation Models (including two versions of one model), and a major goal was to assess the extent to which key climate impacts are consistent between the different models. The major climate impacts are found over North and South America, with the strongest impacts over land found over the United States and northern parts of South America. These responses appear to be driven by a combination of an off-equatorial Gill response to diabatic heating over the Caribbean due to increased rainfall within the region and a Northward shift in the Inter Tropical Convergence Zone (ITCZ) due to the anomalous cross-equatorial SST gradient. The majority of the models show warmer US land temperatures and reduced Mean Sea Level Pressure during summer (JJA) in response to a warmer North Atlantic and a cooler South Atlantic, in line with observations. However the majority of models show no significant impact on US rainfall during summer. Over northern South America, all models show reduced rainfall in southern hemisphere winter (JJA), whilst in Summer (DJF) there is a generally an increase in rainfall. However, there is a large spread amongst the models in the magnitude of the rainfall anomalies over land. Away from the Americas, there are no consistent significant modelled responses. In particular there are no significant changes in the North Atlantic Oscillation (NAO) over the North Atlantic and Europe in Winter (DJF). Additionally, the observed Sahel drying signal in African rainfall is not seen in the modelled responses. Suggesting that, in contrast to some studies, the Atlantic Multidecadal Oscillation was not the primary driver of recent reductions in Sahel rainfall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate model simulations consistently show that surface temperature over land increases more rapidly than over sea in response to greenhouse gas forcing. The enhanced warming over land is not simply a transient effect caused by the land–sea contrast in heat capacities, since it is also present in equilibrium conditions. This paper elucidates the transient adjustment processes over time scales of days to weeks of the surface and tropospheric climate in response to a doubling of CO2 and to changes in sea surface temperature (SST), imposed separately and together, using ensembles of experiments with an atmospheric general circulation model. These adjustment processes can be grouped into three stages: immediate response of the troposphere and surface processes (day 1), fast adjustment of surface processes (days 2–5), and adjustment of the whole troposphere (days 6–20). Some land surface warming in response to doubled CO2 (with unchanged SSTs) occurs immediately because of increased downward longwave radiation. Increased CO2 also leads to reduced plant stomatal resistance and hence restricted evaporation, which increases land surface warming in the first day. Rapid reductions in cloud amount lead in the next few days to increased downward shortwave radiation and further warming, which spreads upward from the surface, and by day 5 the surface and tropospheric response is statistically consistent with the equilibrium value. Land surface warming in response to imposed SST change (with unchanged CO2) is slower. Tropospheric warming is advected inland from the sea, and over land it occurs at all levels together rather than spreading upward from the surface. The atmospheric response to prescribed SST change in about 20 days is statistically consistent with the equilibrium value, and the warming is largest in the upper troposphere over both land and sea. The land surface warming involves reduction of cloud cover and increased downward shortwave radiation, as in the experiment with CO2 change, but in this case it is due to the restriction of moisture supply to the land (indicated by reduced soil moisture), whereas in the CO2 forcing experiment it is due to restricted evaporation despite increased moisture supply (indicated by increased soil moisture). The warming over land in response to SST change is greater than over the sea and is the dominant contribution to the land–sea warming contrast under enhanced CO2 forcing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the predictability of climate arising from ocean heat content (OHC) anomalies is investigated in the HadCM3 coupled atmosphere–ocean model. An ensemble of simulations of the twentieth century are used to provide initial conditions for a case study. The case study consists of two ensembles started from initial conditions with large differences in regional OHC in the North Atlantic, the Southern Ocean and parts of the West Pacific. Surface temperatures and precipitation are on average not predictable beyond seasonal time scales, but for certain initial conditions there may be longer predictability. It is shown that, for the case study examined here, some aspects of tropical precipitation, European surface temperatures and North Atlantic sea-level pressure are potentially predictable 2 years ahead. Predictability also exists in the other case studies, but the climate variables and regions, which are potentially predictable, differ. This work was done as part of the Grid for Coupled Ensemble Prediction (GCEP) eScience project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Decadal prediction uses climate models forced by changing greenhouse gases, as in the International Panel for Climate Change, but unlike longer range predictions they also require initialization with observations of the current climate. In particular, the upper-ocean heat content and circulation have a critical influence. Decadal prediction is still in its infancy and there is an urgent need to understand the important processes that determine predictability on these timescales. We have taken the first Hadley Centre Decadal Prediction System (DePreSys) and implemented it on several NERC institute compute clusters in order to study a wider range of initial condition impacts on decadal forecasting, eventually including the state of the land and cryosphere. The eScience methods are used to manage submission and output from the many ensemble model runs required to assess predictive skill. Early results suggest initial condition skill may extend for several years, even over land areas, but this depends sensitively on the definition used to measure skill, and alternatives are presented. The Grid for Coupled Ensemble Prediction (GCEP) system will allow the UK academic community to contribute to international experiments being planned to explore decadal climate predictability.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jupiter’s magnetosphere acts as a point source of near-relativistic electrons within the heliosphere. In this study, three solar cycles of Jovian electron data in near-Earth space are examined. Jovian electron intensity is found to peak for an ideal Parker spiral connection, but with considerable spread about this point. Assuming the peak in Jovian electron counts indicates the best magnetic connection to Jupiter, we find a clear trend for fast and slow solar wind to be over- and under-wound with respect to the ideal Parker spiral, respectively. This is shown to be well explained in terms of solar wind stream interactions. Thus, modulation of Jovian electrons by corotating interaction regions (CIRs) may primarily be the result of changing magnetic connection, rather than CIRs acting as barriers to cross-field diffusion. By using Jovian electrons to remote sensing magnetic connectivity with Jupiter’s magnetosphere, we suggest that they provide a means to validate solar wind models between 1 and 5 AU, even when suitable in situ solar wind observations are not available. Furthermore, using Jovian electron observations as probes of heliospheric magnetic topology could provide insight into heliospheric magnetic field braiding and turbulence, as well as any systematic under-winding of the heliospheric magnetic field relative to the Parker spiral from footpoint motion of the magnetic field.