727 resultados para Home heating
Resumo:
Occupants’ behaviour when improving the indoor environment plays a significant role in saving energy in buildings. Therefore the key step to reducing energy consumption and carbon emissions from buildings is to understand how occupants interact with the environment they are exposed to in terms of achieving thermal comfort and well-being; though such interaction is complex. This paper presents a dynamic process of occupant behaviours involving technological, personal and psychological adaptations in response to varied thermal conditions based on the data covering four seasons gathered from the field study in Chongqing, China. It demonstrates that occupants are active players in environmental control and their adaptive responses are driven strongly by ambient thermal stimuli and vary from season to season and from time to time, even on the same day. Positive, dynamic, behavioural adaptation will help save energy used in heating and cooling buildings. However, when environmental parameters cannot fully satisfy occupants’ requirements, negative behaviours could conflict with energy saving. The survey revealed that about 23% of windows are partly open for fresh air when air-conditioners are in operation in summer. This paper addresses the issues how the building and environmental systems should be designed, operated and managed in a way that meets the requirements of energy efficiency without compromising wellbeing and productivity.
Resumo:
To achieve CO2 emissions reductions the UK Building Regulations require developers of new residential buildings to calculate expected CO2 emissions arising from their energy consumption using a methodology such as Standard Assessment Procedure (SAP 2005) or, more recently SAP 2009. SAP encompasses all domestic heat consumption and a limited proportion of the electricity consumption. However, these calculations are rarely verified with real energy consumption and related CO2 emissions. This paper presents the results of an analysis based on weekly head demand data for more than 200 individual flats. The data is collected from recently built residential development connected to a district heating network. A methodology for separating out the domestic hot water use (DHW) and space heating demand (SH) has been developed and compares measured values to the demand calculated using SAP 2005 and 2009 methodologies. The analysis shows also the variance in DHW and SH consumption between both size of the flats and tenure (privately owned or housing association). Evaluation of the space heating consumption includes also an estimation of the heating degree day (HDD) base temperature for each block of flats and its comparison to the average base temperature calculated using the SAP 2005 methodology.
Resumo:
Nowadays utilising the proper HVAC system is essential both in extreme weather conditions and dense buildings design. Hydraulic loops are the most common parts in all air conditioning systems. This article aims to investigate the performance of different hydraulic loop arrangements in variable flow systems. Technical, economic and environmental assessments have been considered in this process. A dynamic system simulation is generated to evaluate the system performance and an economic evaluation is conducted by whole life cost assessment. Moreover, environmental impacts have been studied by considering the whole life energy consumption, CO2 emission, the embodied energy and embodied CO2 of the system components. Finally, decision-making in choosing the most suitable hydraulic system among five well-known alternatives has been proposed.
Resumo:
Augmented Reality systems overlay computer generated information onto a user's natural senses. Where this additional information is visual, the information is overlaid on the user's natural visual field of view through a head mounted (or “head-up”) display device. Integrated Home Systems provides a network that links every electrical device in the home which provides to a user both control and data transparency across the network.
Resumo:
Much of the literature in international business analysing the multinational enterprise uses the country as the relevant environmental parameter. This paper presents both theoretical and empirical evidence to demonstrate that country-level analysis now needs to be augmented by analysis at the ‘regional’ level of the broad triad markets of Europe, North America and the Asia Pacific. The great majority of the world's 500 largest firms concentrate their activities within their home region of the triad. This study uses variance component analysis and finds that this home region effect outperforms the country effect. Together, the regional and industry effects explain most of the geographic expansion of multinational enterprises (MNEs), whereas country, firm and year effects are very minor. The new data and variance component analysis on the activities of large MNEs reported here suggest that new thinking is required about the importance of large regions of the triad as the relevant unit of analysis for business strategy to supplement the conventional focus on the country.
Resumo:
Providing homeowners with real-time feedback on their electricity consumption through a dedicated display device has been shown to reduce consumption by approximately 6-10%. However, recent advances in smart grid technology have enabled larger sample sizes and more representative sample selection and recruitment methods for display trials. By analyzing these factors using data from current studies, this paper argues that a realistic, large-scale conservation effect from feedback is in the range of 3-5%. Subsequent analysis shows that providing real-time feedback may not be a cost effective strategy for reducing carbon emissions in Australia, but that it may enable additional benefits such as customer retention and peak-load shift.
Resumo:
This paper constructs a housing market model to analyse conditions for different generations of households in the UK. Previous policy work has suggested that baby-boomers have benefitted at the expense of younger generations. The model relies on a form of financial accelerator in which existing homeowners reinvest a proportion of the capital gains on moving home. The model is extended to look at homeownership probabilities. It also explains why an increasing share of mortgages has gone to existing owners, despite market liberalisation and securitisation. In addition, the model contributes to the explanation of volatility.
Resumo:
This article examines the ways that technological objects inside the home are viewed and productively used by a group of older people to extend their access to environments beyond the home. Beginning with a discussion of types of domestic object, we highlight appliances and gadgets, and focus our attentions on the latter. The changes in life brought on by ageing, in particular a reduction in mobility, provide the context for our study, in which access to the outside world becomes increasingly difficult. Recognising their changing circumstances led our participants to actively and selectively engage with these objects, mitigating the shrinking of their accessible environment by using them as a gateway to the many virtual worlds now available. We coin the term ‘portal objects’ to describe the potential that this type of technological object provides, and suggest that the investigation of interiors can be enriched by recognising and including the worlds outside that become integral to occupation inside.
Resumo:
The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.
Resumo:
To study the thermal effects on airflow in a street canyon under real heating conditions (due to diurnal solar radiation), a one-way static approach combining an urban canopy model and CFD is proposed in this paper. An urban canopy model was developed to calculate the individual temperatures of surfaces in the street canyon. The calculated surface temperature may be used as a thermal boundary for CFD simulation. The reliability of this model was validated against a field experiment in Harbin, China. Using the coupling calculation method, the wind flow and air exchange process inside an idealized street canyon was studied. The simulation results show that the thermal effect has significant impacts on the transfer process in the street canyon, especially when the approaching wind is weak. Under a real diurnal thermal forcing, the flow structure within the street canyon changes from one primary vortex to two counter-rotating vortices. The change of transfer process, induced by the buoyancy force, was determined by the thermal condition of all surfaces rather than a single one. Key words: thermal effect, street canyon, numerical simulation, transfer process, diurnal heating.
Resumo:
This paper examines the relationship between embodied individuals and the home that they inhabit. Although there has been some work on both the embodied practices in the home and on the material nature of the home itself, this has not been integrated with the majority of research on home which has focused on meaning. It is argued that there is a lack of a unifying framework that can incorporate both use and meaning elements of home. A way of incorporating these elements through adoption of the concept of affordances is put forward. However, the affordance approach needs to be developed to achieve this. The paper does this first by incorporating the concept of intentionality of actions and then through the use of the concept of well‐being. Debates about housing for people with a physical disability and the practical help provided to this group of people are used to illustrate how the approach could work.
Resumo:
Using NCANDS data of US child maltreatment reports for 2009, logistic regression, probit analysis, discriminant analysis and an artificial neural network are used to determine the factors which explain the decision to place a child in out-of-home care. As well as developing a new model for 2009, a previous study using 2005 data is replicated. While there are many small differences, the four estimation techniques give broadly the same results, demonstrating the robustness of the results. Similarly, apart from age and sexual abuse, the 2005 and 2009 results are roughly similar. For 2009, child characteristics (particularly child emotional problems) are more important than the nature of the abuse and the situation of the household; while caregiver characteristics are the least important. All these models have low explanatory power.
Resumo:
Particulate matter generated during the cooking process has been identified as one of the major problems of indoor air quality and indoor environmental health. Reliable assessment of exposure to cooking-generated particles requires accurate information of emission characteristics especially the size distribution. This study characterizes the volume/mass-based size distribution of the fume particles at the oil-heating stage for the typical Chinese-style cooking in a laboratory kitchen. A laser-diffraction size analyzer is applied to measure the volume frequency of fume particles ranged from 0.1 to 10 μm, which contribute to most mass proportion in PM2.5 and PM10. Measurements show that particle emissions have little dependence on the types of vegetable oil used but have a close relationship with the heating temperature. It is found that volume frequency of fume particles in the range of 1.0–4.0 μm accounts for nearly 100% of PM0.1–10 with the mode diameter 2.7 μm, median diameter 2.6 μm, Sauter mean diameter 3.0 μm, DeBroukere mean diameter 3.2 μm, and distribution span 0.48. Such information on emission characteristics obtained in this study can be possibly used to improve the assessment of indoor air quality due to PM0.1–10 in the kitchen and residential flat.
Resumo:
An analysis of the attribution of past and future changes in stratospheric ozone and temperature to anthropogenic forcings is presented. The analysis is an extension of the study of Shepherd and Jonsson (2008) who analyzed chemistry-climate simulations from the Canadian Middle Atmosphere Model (CMAM) and attributed both past and future changes to changes in the external forcings, i.e. the abundances of ozone-depleting substances (ODS) and well-mixed greenhouse gases. The current study is based on a new CMAM dataset and includes two important changes. First, we account for the nonlinear radiative response to changes in CO2. It is shown that over centennial time scales the radiative response in the upper stratosphere to CO2 changes is significantly nonlinear and that failure to account for this effect leads to a significant error in the attribution. To our knowledge this nonlinearity has not been considered before in attribution analysis, including multiple linear regression studies. For the regression analysis presented here the nonlinearity was taken into account by using CO2 heating rate, rather than CO2 abundance, as the explanatory variable. This approach yields considerable corrections to the results of the previous study and can be recommended to other researchers. Second, an error in the way the CO2 forcing changes are implemented in the CMAM was corrected, which significantly affects the results for the recent past. As the radiation scheme, based on Fomichev et al. (1998), is used in several other models we provide some description of the problem and how it was fixed.
Resumo:
Observational and numerical evidence suggest that variability in the extratropical stratospheric circulation has a demonstrable impact on tropospheric variability on intraseasonal time scales. In this study, it is demonstrated that the amplitude of the observed tropospheric response to vacillations in the stratospheric flow is quantitatively similar to the zonal-mean balanced response to the anomalous wave forcing at stratospheric levels. It is further demonstrated that the persistence of the tropospheric response is consistent with the impact of anomalous diabatic heating in the polar stratosphere as stratospheric temperatures relax to climatology. The results contradict previous studies that suggest that variations in stratospheric wave drag are too weak to account for the attendant changes in the tropospheric flow. However, the results also reveal that stratospheric processes alone cannot account for the observed meridional redistribution of momentum within the troposphere.