795 resultados para Hierarchical clustering
Resumo:
This paper introduces a new class of predictive ART architectures, called Adaptive Resonance Associative Map (ARAM) which performs rapid, yet stable heteroassociative learning in real time environment. ARAM can be visualized as two ART modules sharing a single recognition code layer. The unit for recruiting a recognition code is a pattern pair. Code stabilization is ensured by restricting coding to states where resonances are reached in both modules. Simulation results have shown that ARAM is capable of self-stabilizing association of arbitrary pattern pairs of arbitrary complexity appearing in arbitrary sequence by fast learning in real time environment. Due to the symmetrical network structure, associative recall can be performed in both directions.
Resumo:
A supersonic expansion containing acetylene seeded into Ar and produced from a circular nozzle is investigated using CW/cavity ring down spectroscopy, in the 1.5 μm range. The results, also involving experiments with pure acetylene and acetylene-He expansions, as well as slit nozzles, demonstrate that the denser central section in the expansion is slightly heated by the formation of acetylene aggregates, resulting into a dip in the monomer absorption line profiles. Acetylene-Ar aggregates are also formed at the edge of the circular nozzle expansion cone. © 2008 Elsevier B.V. All rights reserved.
Resumo:
For efficient use of metal oxides, such as MnO(2) and RuO(2), in pseudocapacitors and other electrochemical applications, the poor conductivity of the metal oxide is a major problem. To tackle the problem, we have designed a ternary nanocomposite film composed of metal oxide (MnO(2)), carbon nanotube (CNT), and conducting polymer (CP). Each component in the MnO(2)/CNT/CP film provides unique and critical function to achieve optimized electrochemical properties. The electrochemical performance of the film is evaluated by cyclic voltammetry, and constant-current charge/discharge cycling techniques. Specific capacitance (SC) of the ternary composite electrode can reach 427 F/g. Even at high mass loading and high concentration of MnO(2) (60%), the film still showed SC value as high as 200 F/g. The electrode also exhibited excellent charge/discharge rate and good cycling stability, retaining over 99% of its initial charge after 1000 cycles. The results demonstrated that MnO(2) is effectively utilized with assistance of other components (fFWNTs and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) in the electrode. Such ternary composite is very promising for the next generation high performance electrochemical supercapacitors.
Resumo:
A tree-based dictionary learning model is developed for joint analysis of imagery and associated text. The dictionary learning may be applied directly to the imagery from patches, or to general feature vectors extracted from patches or superpixels (using any existing method for image feature extraction). Each image is associated with a path through the tree (from root to a leaf), and each of the multiple patches in a given image is associated with one node in that path. Nodes near the tree root are shared between multiple paths, representing image characteristics that are common among different types of images. Moving toward the leaves, nodes become specialized, representing details in image classes. If available, words (text) are also jointly modeled, with a path-dependent probability over words. The tree structure is inferred via a nested Dirichlet process, and a retrospective stick-breaking sampler is used to infer the tree depth and width.
Resumo:
The receptor deleted in colorectal cancer (DCC) directs dynamic polarizing activities in animals toward its extracellular ligand netrin. How DCC polarizes toward netrin is poorly understood. By performing live-cell imaging of the DCC orthologue UNC-40 during anchor cell invasion in Caenorhabditis elegans, we have found that UNC-40 clusters, recruits F-actin effectors, and generates F-actin in the absence of UNC-6 (netrin). Time-lapse analyses revealed that UNC-40 clusters assemble, disassemble, and reform at periodic intervals in different regions of the cell membrane. This oscillatory behavior indicates that UNC-40 clusters through a mechanism involving interlinked positive (formation) and negative (disassembly) feedback. We show that endogenous UNC-6 and ectopically provided UNC-6 orient and stabilize UNC-40 clustering. Furthermore, the UNC-40-binding protein MADD-2 (a TRIM family protein) promotes ligand-independent clustering and robust UNC-40 polarization toward UNC-6. Together, our data suggest that UNC-6 (netrin) directs polarized responses by stabilizing UNC-40 clustering. We propose that ligand-independent UNC-40 clustering provides a robust and adaptable mechanism to polarize toward netrin.
Resumo:
The powerful general Pacala-Hassell host-parasitoid model for a patchy environment, which allows host density–dependent heterogeneity (HDD) to be distinguished from between-patch, host density–independent heterogeneity (HDI), is reformulated within the class of the generalized linear model (GLM) family. This improves accessibility through the provision of general software within well–known statistical systems, and allows a rich variety of models to be formulated. Covariates such as age class, host density and abiotic factors may be included easily. For the case where there is no HDI, the formulation is a simple GLM. When there is HDI in addition to HDD, the formulation is a hierarchical generalized linear model. Two forms of HDI model are considered, both with between-patch variability: one has binomial variation within patches and one has extra-binomial, overdispersed variation within patches. Examples are given demonstrating parameter estimation with standard errors, and hypothesis testing. For one example given, the extra-binomial component of the HDI heterogeneity in parasitism is itself shown to be strongly density dependent.
Resumo:
This paper presents two multilevel refinement algorithms for the capacitated clustering problem. Multilevel refinement is a collaborative technique capable of significantly aiding the solution process for optimisation problems. The central methodologies of the technique are filtering solutions from the search space and reducing the level of problem detail to be considered at each level of the solution process. The first multilevel algorithm uses a simple tabu search while the other executes a standard local search procedure. Both algorithms demonstrate that the multilevel technique is capable of aiding the solution process for this combinatorial optimisation problem.