878 resultados para Hierarchical Bayesian Metaanalysis
Resumo:
Aims: Guided tissue regeneration (GTR) and enamel matrix derivatives (EMD) are two popular regenerative treatments for periodontal infrabony lesions. Both have been used in conjunction with other regenerative materials. We conducted a Bayesian network meta-analysis of randomized controlled trials on treatment effects of GTR, EMD and their combination therapies. Material and Methods: A systematic literature search was conducted using the Medline, EMBASE, LILACS and CENTRAL databases up to and including June 2011. Treatment outcomes were changes in probing pocket depth (PPD), clinical attachment level (CAL) and infrabony defect depth. Different types of bone grafts were treated as one group and so were barrier membranes. Results: A total of 53 studies were included in this review, and we found small differences between regenerative therapies which were non-significant statistically and clinically. GTR and GTR-related combination therapies achieved greater PPD reduction than EMD and EMD-related combination therapies. Combination therapies achieved slightly greater CAL gain than the use of EMD or GTR alone. GTR with BG achieved greatest defect fill. Conclusion: Combination therapies performed better than single therapies, but the additional benefits were small. Bayesian network meta-analysis is a promising technique to compare multiple treatments. Further analysis of methodological characteristics will be required prior to clinical recommendations.
Resumo:
We explore the meaning of information about quantities of interest. Our approach is divided in two scenarios: the analysis of observations and the planning of an experiment. First, we review the Sufficiency, Conditionality and Likelihood principles and how they relate to trivial experiments. Next, we review Blackwell Sufficiency and show that sampling without replacement is Blackwell Sufficient for sampling with replacement. Finally, we unify the two scenarios presenting an extension of the relationship between Blackwell Equivalence and the Likelihood Principle.
Resumo:
A set of predictor variables is said to be intrinsically multivariate predictive (IMP) for a target variable if all properly contained subsets of the predictor set are poor predictors of the. target but the full set predicts the target with great accuracy. In a previous article, the main properties of IMP Boolean variables have been analytically described, including the introduction of the IMP score, a metric based on the coefficient of determination (CoD) as a measure of predictiveness with respect to the target variable. It was shown that the IMP score depends on four main properties: logic of connection, predictive power, covariance between predictors and marginal predictor probabilities (biases). This paper extends that work to a broader context, in an attempt to characterize properties of discrete Bayesian networks that contribute to the presence of variables (network nodes) with high IMP scores. We have found that there is a relationship between the IMP score of a node and its territory size, i.e., its position along a pathway with one source: nodes far from the source display larger IMP scores than those closer to the source, and longer pathways display larger maximum IMP scores. This appears to be a consequence of the fact that nodes with small territory have larger probability of having highly covariate predictors, which leads to smaller IMP scores. In addition, a larger number of XOR and NXOR predictive logic relationships has positive influence over the maximum IMP score found in the pathway. This work presents analytical results based on a simple structure network and an analysis involving random networks constructed by computational simulations. Finally, results from a real Bayesian network application are provided. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The mechanisms responsible for containing activity in systems represented by networks are crucial in various phenomena, for example, in diseases such as epilepsy that affect the neuronal networks and for information dissemination in social networks. The first models to account for contained activity included triggering and inhibition processes, but they cannot be applied to social networks where inhibition is clearly absent. A recent model showed that contained activity can be achieved with no need of inhibition processes provided that the network is subdivided into modules (communities). In this paper, we introduce a new concept inspired in the Hebbian theory, through which containment of activity is achieved by incorporating a dynamics based on a decaying activity in a random walk mechanism preferential to the node activity. Upon selecting the decay coefficient within a proper range, we observed sustained activity in all the networks tested, namely, random, Barabasi-Albert and geographical networks. The generality of this finding was confirmed by showing that modularity is no longer needed if the dynamics based on the integrate-and-fire dynamics incorporated the decay factor. Taken together, these results provide a proof of principle that persistent, restrained network activation might occur in the absence of any particular topological structure. This may be the reason why neuronal activity does not spread out to the entire neuronal network, even when no special topological organization exists.
Resumo:
The objective of this paper is to model variations in test-day milk yields of first lactations of Holstein cows by RR using B-spline functions and Bayesian inference in order to fit adequate and parsimonious models for the estimation of genetic parameters. They used 152,145 test day milk yield records from 7317 first lactations of Holstein cows. The model established in this study was additive, permanent environmental and residual random effects. In addition, contemporary group and linear and quadratic effects of the age of cow at calving were included as fixed effects. Authors modeled the average lactation curve of the population with a fourth-order orthogonal Legendre polynomial. They concluded that a cubic B-spline with seven random regression coefficients for both the additive genetic and permanent environment effects was to be the best according to residual mean square and residual variance estimates. Moreover they urged a lower order model (quadratic B-spline with seven random regression coefficients for both random effects) could be adopted because it yielded practically the same genetic parameter estimates with parsimony. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A common interest in gene expression data analysis is to identify from a large pool of candidate genes the genes that present significant changes in expression levels between a treatment and a control biological condition. Usually, it is done using a statistic value and a cutoff value that are used to separate the genes differentially and nondifferentially expressed. In this paper, we propose a Bayesian approach to identify genes differentially expressed calculating sequentially credibility intervals from predictive densities which are constructed using the sampled mean treatment effect from all genes in study excluding the treatment effect of genes previously identified with statistical evidence for difference. We compare our Bayesian approach with the standard ones based on the use of the t-test and modified t-tests via a simulation study, using small sample sizes which are common in gene expression data analysis. Results obtained report evidence that the proposed approach performs better than standard ones, especially for cases with mean differences and increases in treatment variance in relation to control variance. We also apply the methodologies to a well-known publicly available data set on Escherichia coli bacterium.
Resumo:
Objective: To assess the risk factors for delayed diagnosis of uterine cervical lesions. Materials and Methods: This is a case-control study that recruited 178 women at 2 Brazilian hospitals. The cases (n = 74) were composed of women with a late diagnosis of a lesion in the uterine cervix (invasive carcinoma in any stage). The controls (n = 104) were composed of women with cervical lesions diagnosed early on (low-or high-grade intraepithelial lesions). The analysis was performed by means of logistic regression model using a hierarchical model. The socioeconomic and demographic variables were included at level I (distal). Level II (intermediate) included the personal and family antecedents and knowledge about the Papanicolaou test and human papillomavirus. Level III (proximal) encompassed the variables relating to individuals' care for their own health, gynecologic symptoms, and variables relating to access to the health care system. Results: The risk factors for late diagnosis of uterine cervical lesions were age older than 40 years (odds ratio [OR] = 10.4; 95% confidence interval [CI], 2.3-48.4), not knowing the difference between the Papanicolaou test and gynecological pelvic examinations (OR, = 2.5; 95% CI, 1.3-4.9), not thinking that the Papanicolaou test was important (odds ratio [OR], 4.2; 95% CI, 1.3-13.4), and abnormal vaginal bleeding (OR, 15.0; 95% CI, 6.5-35.0). Previous treatment for sexually transmissible disease was a protective factor (OR, 0.3; 95% CI, 0.1-0.8) for delayed diagnosis. Conclusions: Deficiencies in cervical cancer prevention programs in developing countries are not simply a matter of better provision and coverage of Papanicolaou tests. The misconception about the Papanicolaou test is a serious educational problem, as demonstrated by the present study.
Resumo:
OBJECTIVE: To determine whether the use of vaginal progesterone in asymptomatic women with a sonographic short cervix (<= 25 mm) in the midtrimester reduces the risk of preterm birth and improves neonatal morbidity and mortality. STUDY DESIGN: Individual patient data metaanalysis of randomized controlled trials. RESULTS: Five trials of high quality were included with a total of 775 women and 827 infants. Treatment with vaginal progesterone was associated with a significant reduction in the rate of preterm birth <33 weeks (relative risk [RR], 0.58; 95% confidence interval [CI], 0.42-0.80), <35 weeks (RR, 0.69; 95% CI, 0.55-0.88), and <28 weeks (RR, 0.50; 95% CI, 0.30-0.81); respiratory distress syndrome (RR, 0.48; 95% CI, 0.30-0.76); composite neonatal morbidity and mortality (RR, 0.57; 95% CI, 0.40-0.81); birthweight <1500 g (RR, 0.55; 95% CI, 0.38-0.80); admission to neonatal intensive care unit (RR, 0.75; 95% CI, 0.59-0.94); and requirement for mechanical ventilation (RR, 0.66; 95% CI, 0.44-0.98). There were no significant differences between the vaginal progesterone and placebo groups in the rate of adverse maternal events or congenital anomalies. CONCLUSION: Vaginal progesterone administration to asymptomatic women with a sonographic short cervix reduces the risk of preterm birth and neonatal morbidity and mortality.
Resumo:
In this article, we propose a new Bayesian flexible cure rate survival model, which generalises the stochastic model of Klebanov et al. [Klebanov LB, Rachev ST and Yakovlev AY. A stochastic-model of radiation carcinogenesis - latent time distributions and their properties. Math Biosci 1993; 113: 51-75], and has much in common with the destructive model formulated by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de Sao Carlos, Sao Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)]. In our approach, the accumulated number of lesions or altered cells follows a compound weighted Poisson distribution. This model is more flexible than the promotion time cure model in terms of dispersion. Moreover, it possesses an interesting and realistic interpretation of the biological mechanism of the occurrence of the event of interest as it includes a destructive process of tumour cells after an initial treatment or the capacity of an individual exposed to irradiation to repair altered cells that results in cancer induction. In other words, what is recorded is only the damaged portion of the original number of altered cells not eliminated by the treatment or repaired by the repair system of an individual. Markov Chain Monte Carlo (MCMC) methods are then used to develop Bayesian inference for the proposed model. Also, some discussions on the model selection and an illustration with a cutaneous melanoma data set analysed by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de Sao Carlos, Sao Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)] are presented.
Resumo:
Abstract Background An important challenge for transcript counting methods such as Serial Analysis of Gene Expression (SAGE), "Digital Northern" or Massively Parallel Signature Sequencing (MPSS), is to carry out statistical analyses that account for the within-class variability, i.e., variability due to the intrinsic biological differences among sampled individuals of the same class, and not only variability due to technical sampling error. Results We introduce a Bayesian model that accounts for the within-class variability by means of mixture distribution. We show that the previously available approaches of aggregation in pools ("pseudo-libraries") and the Beta-Binomial model, are particular cases of the mixture model. We illustrate our method with a brain tumor vs. normal comparison using SAGE data from public databases. We show examples of tags regarded as differentially expressed with high significance if the within-class variability is ignored, but clearly not so significant if one accounts for it. Conclusion Using available information about biological replicates, one can transform a list of candidate transcripts showing differential expression to a more reliable one. Our method is freely available, under GPL/GNU copyleft, through a user friendly web-based on-line tool or as R language scripts at supplemental web-site.
Resumo:
Abstract Background The search for enriched (aka over-represented or enhanced) ontology terms in a list of genes obtained from microarray experiments is becoming a standard procedure for a system-level analysis. This procedure tries to summarize the information focussing on classification designs such as Gene Ontology, KEGG pathways, and so on, instead of focussing on individual genes. Although it is well known in statistics that association and significance are distinct concepts, only the former approach has been used to deal with the ontology term enrichment problem. Results BayGO implements a Bayesian approach to search for enriched terms from microarray data. The R source-code is freely available at http://blasto.iq.usp.br/~tkoide/BayGO in three versions: Linux, which can be easily incorporated into pre-existent pipelines; Windows, to be controlled interactively; and as a web-tool. The software was validated using a bacterial heat shock response dataset, since this stress triggers known system-level responses. Conclusion The Bayesian model accounts for the fact that, eventually, not all the genes from a given category are observable in microarray data due to low intensity signal, quality filters, genes that were not spotted and so on. Moreover, BayGO allows one to measure the statistical association between generic ontology terms and differential expression, instead of working only with the common significance analysis.
Resumo:
OBJECTIVE: To estimate the pretest probability of Cushing's syndrome (CS) diagnosis by a Bayesian approach using intuitive clinical judgment. MATERIALS AND METHODS: Physicians were requested, in seven endocrinology meetings, to answer three questions: "Based on your personal expertise, after obtaining clinical history and physical examination, without using laboratorial tests, what is your probability of diagnosing Cushing's Syndrome?"; "For how long have you been practicing Endocrinology?"; and "Where do you work?". A Bayesian beta regression, using the WinBugs software was employed. RESULTS: We obtained 294 questionnaires. The mean pretest probability of CS diagnosis was 51.6% (95%CI: 48.7-54.3). The probability was directly related to experience in endocrinology, but not with the place of work. CONCLUSION: Pretest probability of CS diagnosis was estimated using a Bayesian methodology. Although pretest likelihood can be context-dependent, experience based on years of practice may help the practitioner to diagnosis CS. Arq Bras Endocrinol Metab. 2012;56(9):633-7
Resumo:
INTRODUCTION: The purpose of this ecological study was to evaluate the urban spatial and temporal distribution of tuberculosis (TB) in Ribeirão Preto, State of São Paulo, southeast Brazil, between 2006 and 2009 and to evaluate its relationship with factors of social vulnerability such as income and education level. METHODS: We evaluated data from TBWeb, an electronic notification system for TB cases. Measures of social vulnerability were obtained from the SEADE Foundation, and information about the number of inhabitants, education and income of the households were obtained from Brazilian Institute of Geography and Statistics. Statistical analyses were conducted by a Bayesian regression model assuming a Poisson distribution for the observed new cases of TB in each area. A conditional autoregressive structure was used for the spatial covariance structure. RESULTS: The Bayesian model confirmed the spatial heterogeneity of TB distribution in Ribeirão Preto, identifying areas with elevated risk and the effects of social vulnerability on the disease. We demonstrated that the rate of TB was correlated with the measures of income, education and social vulnerability. However, we observed areas with low vulnerability and high education and income, but with high estimated TB rates. CONCLUSIONS: The study identified areas with different risks for TB, given that the public health system deals with the characteristics of each region individually and prioritizes those that present a higher propensity to risk of TB. Complex relationships may exist between TB incidence and a wide range of environmental and intrinsic factors, which need to be studied in future research.
Resumo:
In this work we compared the estimates of the parameters of ARCH models using a complete Bayesian method and an empirical Bayesian method in which we adopted a non-informative prior distribution and informative prior distribution, respectively. We also considered a reparameterization of those models in order to map the space of the parameters into real space. This procedure permits choosing prior normal distributions for the transformed parameters. The posterior summaries were obtained using Monte Carlo Markov chain methods (MCMC). The methodology was evaluated by considering the Telebras series from the Brazilian financial market. The results show that the two methods are able to adjust ARCH models with different numbers of parameters. The empirical Bayesian method provided a more parsimonious model to the data and better adjustment than the complete Bayesian method.
Resumo:
Spin systems in the presence of disorder are described by two sets of degrees of freedom, associated with orientational (spin) and disorder variables, which may be characterized by two distinct relaxation times. Disordered spin models have been mostly investigated in the quenched regime, which is the usual situation in solid state physics, and in which the relaxation time of the disorder variables is much larger than the typical measurement times. In this quenched regime, disorder variables are fixed, and only the orientational variables are duly thermalized. Recent studies in the context of lattice statistical models for the phase diagrams of nematic liquid-crystalline systems have stimulated the interest of going beyond the quenched regime. The phase diagrams predicted by these calculations for a simple Maier-Saupe model turn out to be qualitative different from the quenched case if the two sets of degrees of freedom are allowed to reach thermal equilibrium during the experimental time, which is known as the fully annealed regime. In this work, we develop a transfer matrix formalism to investigate annealed disordered Ising models on two hierarchical structures, the diamond hierarchical lattice (DHL) and the Apollonian network (AN). The calculations follow the same steps used for the analysis of simple uniform systems, which amounts to deriving proper recurrence maps for the thermodynamic and magnetic variables in terms of the generations of the construction of the hierarchical structures. In this context, we may consider different kinds of disorder, and different types of ferromagnetic and anti-ferromagnetic interactions. In the present work, we analyze the effects of dilution, which are produced by the removal of some magnetic ions. The system is treated in a “grand canonical" ensemble. The introduction of two extra fields, related to the concentration of two different types of particles, leads to higher-rank transfer matrices as compared with the formalism for the usual uniform models. Preliminary calculations on a DHL indicate that there is a phase transition for a wide range of dilution concentrations. Ising spin systems on the AN are known to be ferromagnetically ordered at all temperatures; in the presence of dilution, however, there are indications of a disordered (paramagnetic) phase at low concentrations of magnetic ions.