892 resultados para Hepatic dysfunction
Resumo:
BACKGROUND: Switzerland is a region in which alveolar echinococcosis (AE) is endemic. Studies evaluating outcomes after liver resection (LR) for AE are scarce. The aim of this study was to assess the short- and long-term outcomes of AE patients after LR in a single tertiary referral center. METHODS: We retrospectively analyzed data pertaining to all patients with liver AE who were treated with LR at our institution between January 1992 and December 2013. Patient demographics, intraoperative data, extent of LR procedures (major vs. minor LR), postoperative outcomes, and negative histological margin (R0) resection rate were recorded in a database. Recurrence rates after LR were analyzed. RESULTS: LR was performed in 59 patients diagnosed with hepatic AE (56 complete surgeries, 3 reduction surgeries). Postoperative morbidity and mortality were observed in 34 % (25 % grade I-II, 9 % grade III-IV) and 2 % of the patients, respectively. R0 (complete) resection rate was 71 % (n = 42), and R1/R2 resection rate was 29 % (n = 17). Extra-hepatic recurrence occurred in 1 case (lung) after R0 resection. In cases of R1/R2 resection, 7 intra-hepatic disease progressions occurred with a median time of 10 months (IQR 6-11 months). Long-term (more than 1 year) benzimidazole treatment stabilized the disease in 64 % (9/14) of patients with R1 status. The overall survival rate was 97 %. CONCLUSIONS: Liver AE can be safely and definitively treated with LR, provided that R0 resection is achieved. In cases of R1 resection, benzimidazole therapy seems to be effective in stabilizing the intra-hepatic disease and preventing extra-hepatic recurrence.
Resumo:
NlmCategory="UNASSIGNED">Peroxisome proliferator activated receptors alpha (PPARα) and delta (PPARδ) belong to the nuclear receptor superfamily. PPARα is a target of well established lipid-lowering drugs. PPARδ (also known as PPARβ/δ) has been investigated as a promising antidiabetic drug target; however, the evidence in the literature on PPARδ effect on hepatic lipid metabolism is inconsistent. Mice conditionally expressing human PPARδ demonstrated pronounced weight loss and promoted hepatic steatosis when treated with GW501516 (PPARδ-agonist) when compared to wild type mice. This effect was completely absent in mice with either a dominant negative form of PPARδ or deletion of the DNA binding domain of PPARδ. This confirmed the absolute requirement for PPARδ in the physiological actions of GW501516 and confirmed the potential utility against the human form of this receptor. Surprisingly the genetic deletion of PPARα also abrogated the effect of GW501516 in terms of both weight loss and hepatic lipid accumulation. Also the levels of the PPARα endogenous agonist 16:0/18:1-GPC were shown to be modulated by PPARδ in wild type mice. Our results show that both PPARδ and PPARα receptors are essential for GW501516-driven adipose tissue reduction and subsequently hepatic steatosis, with PPARα working downstream of PPARδ.
Resumo:
Adenosine deaminase-deficient severe combined immunodeficiency (ADA-SCID) is characterized by impaired T-, B- and NK-cell function. Affected children, in addition to early onset of infections, manifest non-immunologic symptoms including pulmonary dysfunction likely attributable to elevated systemic adenosine levels. Lung disease assessment has primarily employed repetitive radiography and effort-dependent functional studies. Through impulse oscillometry (IOS), which is effort-independent, we prospectively obtained objective measures of lung dysfunction in 10 children with ADA-SCID. These results support the use of IOS in the identification and monitoring of lung function abnormalities in children with primary immunodeficiencies.
Resumo:
The fusion of bone marrow (BM) hematopoietic cells with hepatocytes to generate BM derived hepatocytes (BMDH) is a natural process, which is enhanced in damaged tissues. However, the reprogramming needed to generate BMDH and the identity of the resultant cells is essentially unknown. In a mouse model of chronic liver damage, here we identify a modification in the chromatin structure of the hematopoietic nucleus during BMDH formation, accompanied by the loss of the key hematopoietic transcription factor PU.1/Sfpi1 (SFFV proviral integration 1) and gain of the key hepatic transcriptional regulator HNF-1A homeobox A (HNF-1A/Hnf1a). Through genome-wide expression analysis of laser captured BMDH, a differential gene expression pattern was detected and the chromatin changes observed were confirmed at the level of chromatin regulator genes. Similarly, Tranforming Growth Factor-β1 (TGF-β1) and neurotransmitter (e.g. Prostaglandin E Receptor 4 [Ptger4]) pathway genes were over-expressed. In summary, in vivo BMDH generation is a process in which the hematopoietic cell nucleus changes its identity and acquires hepatic features. These BMDHs have their own cell identity characterized by an expression pattern different from hematopoietic cells or hepatocytes. The role of these BMDHs in the liver requires further investigation.
Resumo:
Case: A 11 yo girl with Marfan syndrome was referred to cardiac MR (CMR) to measure the size of her thoracic aorta. She had a typical phenotype with arachnodactyly, abnormally long arms, and was tall and slim (156 cm, 28 kg, body mass index 11,5 kg/m2). She complained of no symptoms. Cardiac auscultation revealed a prominent mid-systolic click and an end-systolic murmur at the apex. A recent echocardiogram showed a moderately dilated left ventricle with normal function and a mitral valve prolapse with moderate mitral valve regurgitation. CMR showed a dilatation of the aortic root (38 mm, Z-score 8.9) and a severe prolapse of the mitral valve with regurgitation. The ventricular cavity was moderately dilated (116 ml/m2) and its contraction was hyperdynamic (stroke volume (SV): 97 ml; LVEF 72%, with the LV volumes measured by modified Simpson method from the apex to the mitral annulus). In this patient however, the mitral prolapse was characterized by a severe backward movement of the valve toward the left atrium (LA) in systole and the dyskinetic movement of the atrioventricular plane caused a ventricularisation of a part of the LA in systole (Figure). This resulted in a significant reduction of LVEF: more than ¼ of the apparent SV was displaced backwards into the ventricularized LA volume, reducing the effective LVEF to 51% (effective SV 69ml). Moreover, by flow measurement, the SV across the ascending aorta was 30 ml (cardiac index 2.0 l/min/m2) allowing the calculation of a regurgitant fraction across the mitral valve of 56%, which was diagnostic for a severe mitral valve insufficiency. Conclusion: This case illustrates the phenomenon of a ventricularisation of the LA where the severe prolapse gives the illusion of a higher attachement of the mitral leaflets within the atrial wall. Besides the severe mitral regurgitation, this paradoxical backwards movement of the valve causes an intraventricular unloading during systole reducing the apparent LVEF of 72% to an effective LVEF of only 51%. In addition, forward flow fraction is only 22% after accounting for the regurgitant volume, as well. This combined involvement of the mitral valve could explain the discrepancy between a low output state and an apparently hyperdynamic LV contraction. Due to its ability to precisely measure flows and volumes, CMR is particularly suited to detect this phenomenon and to quantify its impact on the LV pump function.
Resumo:
Assisted reproductive technologies (ART) induce vascular dysfunction in humans and mice. In mice, ART-induced vascular dysfunction is related to epigenetic alteration of the endothelial nitric oxide synthase (eNOS) gene, resulting in decreased vascular eNOS expression and nitrite/nitrate synthesis. Melatonin is involved in epigenetic regulation, and its administration to sterile women improves the success rate of ART. We hypothesized that addition of melatonin to culture media may prevent ART-induced epigenetic and cardiovascular alterations in mice. We, therefore, assessed mesenteric-artery responses to acetylcholine and arterial blood pressure, together with DNA methylation of the eNOS gene promoter in vascular tissue and nitric oxide plasma concentration in 12-wk-old ART mice generated with and without addition of melatonin to culture media and in control mice. As expected, acetylcholine-induced mesenteric-artery dilation was impaired (P = 0.008 vs. control) and mean arterial blood pressure increased (109.5 ± 3.8 vs. 104.0 ± 4.7 mmHg, P = 0.002, ART vs. control) in ART compared with control mice. These alterations were associated with altered DNA methylation of the eNOS gene promoter (P < 0.001 vs. control) and decreased plasma nitric oxide concentration (10.1 ± 11.1 vs. 29.5 ± 8.0 μM) (P < 0.001 ART vs. control). Addition of melatonin (10(-6) M) to culture media prevented eNOS dysmethylation (P = 0.005, vs. ART + vehicle), normalized nitric oxide plasma concentration (23.1 ± 14.6 μM, P = 0.002 vs. ART + vehicle) and mesentery-artery responsiveness to acetylcholine (P < 0.008 vs. ART + vehicle), and prevented arterial hypertension (104.6 ± 3.4 mmHg, P < 0.003 vs. ART + vehicle). These findings provide proof of principle that modification of culture media prevents ART-induced vascular dysfunction. We speculate that this approach will also allow preventing ART-induced premature atherosclerosis in humans.
Resumo:
Infectious diseases after solid organ transplantation (SOT) are a significant cause of morbidity and reduced allograft and patient survival; however, the influence of infection on the development of chronic allograft dysfunction has not been completely delineated. Some viral infections appear to affect allograft function by both inducing direct tissue damage and immunologically related injury, including acute rejection. In particular, this has been observed for cytomegalovirus (CMV) infection in all SOT recipients and for BK virus infection in kidney transplant recipients, for community-acquired respiratory viruses in lung transplant recipients, and for hepatitis C virus in liver transplant recipients. The impact of bacterial and fungal infections is less clear, but bacterial urinary tract infections and respiratory tract colonization by Pseudomonas aeruginosa and Aspergillus spp appear to be correlated with higher rates of chronic allograft dysfunction in kidney and lung transplant recipients, respectively. Evidence supports the beneficial effects of the use of antiviral prophylaxis for CMV in improving allograft function and survival in SOT recipients. Nevertheless, there is still a need for prospective interventional trials assessing the potential effects of preventive and therapeutic strategies against bacterial and fungal infection for reducing or delaying the development of chronic allograft dysfunction.
Resumo:
Mitochondria has an essential role in myocardial tissue homeostasis; thus deterioration in mitochondrial function eventually leads to cardiomyocyte and endothelial cell death and consequent cardiovascular dysfunction. Several chemical compounds and drugs have been known to directly or indirectly modulate cardiac mitochondrial function, which can account both for the toxicological and pharmacological properties of these substances. In many cases, toxicity problems appear only in the presence of additional cardiovascular disease conditions or develop months/years following the exposure, making the diagnosis difficult. Cardiotoxic agents affecting mitochondria include several widely used anticancer drugs [anthracyclines (Doxorubicin/Adriamycin), cisplatin, trastuzumab (Herceptin), arsenic trioxide (Trisenox), mitoxantrone (Novantrone), imatinib (Gleevec), bevacizumab (Avastin), sunitinib (Sutent), and sorafenib (Nevaxar)], antiviral compound azidothymidine (AZT, Zidovudine) and several oral antidiabetics [e.g., rosiglitazone (Avandia)]. Illicit drugs such as alcohol, cocaine, methamphetamine, ecstasy, and synthetic cannabinoids (spice, K2) may also induce mitochondria-related cardiotoxicity. Mitochondrial toxicity develops due to various mechanisms involving interference with the mitochondrial respiratory chain (e.g., uncoupling) or inhibition of the important mitochondrial enzymes (oxidative phosphorylation, Szent-Györgyi-Krebs cycle, mitochondrial DNA replication, ADP/ATP translocator). The final phase of mitochondrial dysfunction induces loss of mitochondrial membrane potential and an increase in mitochondrial oxidative/nitrative stress, eventually culminating into cell death. This review aims to discuss the mechanisms of mitochondrion-mediated cardiotoxicity of commonly used drugs and some potential cardioprotective strategies to prevent these toxicities.
Resumo:
Well-balanced mitochondrial fission and fusion processes are essential for nervous system development. Loss of function of the main mitochondrial fission mediator, dynamin-related protein 1 (Drp1), is lethal early during embryonic development or around birth, but the role of mitochondrial fission in adult neurons remains unclear. Here we show that inducible Drp1 ablation in neurons of the adult mouse forebrain results in progressive, neuronal subtype-specific alterations of mitochondrial morphology in the hippocampus that are marginally responsive to antioxidant treatment. Furthermore, DRP1 loss affects synaptic transmission and memory function. Although these changes culminate in hippocampal atrophy, they are not sufficient to cause neuronal cell death within 10 weeks of genetic Drp1 ablation. Collectively, our in vivo observations clarify the role of mitochondrial fission in neurons, demonstrating that Drp1 ablation in adult forebrain neurons compromises critical neuronal functions without causing overt neurodegeneration.
Resumo:
Le corps humain emploie le glucose comme source principale d'énergie. L'insuline, sécrétée par les cellules ß-pancreatiques situées dans les îlots de Langerhans, est l'hormone principale assurant un maintien constant du taux de glucose sanguin (glycémie). Les prédispositions génétiques, le manque d'activité physique et un régime déséquilibré peuvent entraîner une perte de sensibilité à l'insuline et des taux de glucose dans le sang élevé (hyperglycémie), une condition nommée diabète de type 2. Cette maladie est initiée par une sensibilité diminuée à l'insuline dans les tissus périphériques, entraînant une demande accrue en insuline. Cette pression continue finie par épuiser les cellules ß-pancreatiques, qui sécrètent alors des niveaux d'insuline insuffisant en trainant l'apparition du diabète. Le vieillissement est un facteur de risque important pour les maladies métaboliques dont le diabète de type 2 faits partis. En effet la majeure partie des diabétiques de type 2 ont plus de 45 ans. Il est connu que le vieillissement entraine une perte de sensibilité à l'insuline, une sécrétion altérée d'insuline, une baisse de réplication et une plus grande mort des ß-cellules pancréatiques. Le but de ma thèse était de mieux comprendre les mécanismes contribuante au dysfonctionnement des cellules ß- pancréatiques lors du vieillissement. Les travaux du « Human Genome Project » ont révélés que seulement 2% de notre génome code pour des protéines. Le reste non-codant fut alors désigné sous le nom de « ADN déchets ». Cependant, l'étude approfondie de cet ADN non-codant ces dernières deux décennies a démontré qu'une grande partie code pour des «MicroARNs », des ARNs courts (20-22 nucleotides) découverts en 1997 chez le vers C.elegans. Depuis lors ces molécules ont été intensivement étudiées, révélant un rôle crucial de ces molécules dans la fonction et la survie des cellules en conditions normales et pathologiques. Le but de cette thèse était d'étudier le rôle des microARNs dans le dysfonctionnement des cellules ß lors du vieillissement. Nos données suggèrent qu'ils peuvent jouer un rôle tantôt salutaire, tantôt nocif sur les cellules ß. Par exemple, certains microARNs réduisent la capacité des cellules ß à se multiplier ou réduisent leur survie, alors que d'autres protègent ces cellules contre la mort. Pour conclure, nous avons démontré les microARNs jouent un rôle important dans le dysfonctionnement des cellules ß lors du vieillissement. Ces nouvelles découvertes préparent le terrain pour la conception de futures stratégies visant à améliorer la résistance des cellules ß pancréatiques afin de trouver de nouveaux traitements du diabète de type 2. -- Le diabète de type 2 est une maladie métabolique due à la résistance à l'action de l'insuline des tissus cibles combinée à l'incapacité des cellules ß pancréatiques à sécréter les niveaux adéquats d'insuline. Le vieillissement est associé à un déclin global des fonctions de l'organisme incluant une diminution de la fonction et du renouvellement des cellules ß pancréatiques. Il constitue ainsi un risque majeur de développement des maladies métaboliques dont le diabète de type 2. Le but de cette thèse était d'étudier le rôle des microARNs (une classe d'ARN non- codants) dans le dysfonctionnement lié au vieillissement des cellules ß. L'analyse par microarray des niveaux d'expression des microARN dans les îlots pancréatiques de rats Wistar mâles âgés de 3 et 12 mois nous a permis d'identifier de nombreux changements d'expression de microARNs associés au vieillissement. Afin d'étudier les liens entre ces modifications et le déclin des cellules ß, les changements observés lors du vieillissement ont été reproduits spécifiquement dans une lignée cellulaire, dans des cellules ß primaires de jeune rats ou de donneurs humains sains. La diminution du miR-181a réduit la prolifération des cellules ß, tandis que la diminution du miR-130b ou l'augmentation du miR-383 protège contre l'apoptose induite par les cytokines. L'augmentation du miR-34a induit l'apoptose et inhibe la prolifération des cellules ß en réponse aux hormones Exendin-4 et prolactine et au facteur de croissance PDGF-AA. Cette perte de capacité réplicative est similaire à celle observée dans des cellules ß de rats âgés de 12 mois. Dans la littérature, la perte du récepteur au PDGF-r-a est associée à la diminution de la capacité proliférative des cellules ß observée lors du vieillissement. Nous avons pu démontrer que PDGF-r-a est une cible directe de miR- 34a, suggérant que l'effet néfaste de miR-34a sur la prolifération des cellules ß est, du moins en partie, lié à l'inhibition de l'expression de PDGF-r-a. L'expression de ce miR est aussi plus élevée dans le foie et le cerveau des animaux de 1 an et augmente avec l'âge dans les ilôts de donneurs non-diabétiques. Ces résultats suggèrent que miR-34a pourrait être non seulement impliqué dans l'affaiblissement des fonctions pancréatiques associé à l'âge, mais également jouer un rôle dans les tissus cibles de l'insuline et ainsi contribuer au vieillissement de l'organisme en général. Pour conclure, les travaux obtenus durant cette thèse suggèrent que des microARNs sont impliqués dans le dysfonctionnement des cellules ß pancréatiques durant le vieillissement. -- Type 2 diabetes is a metabolic disease characterized by impaired glucose tolerance, of the insulin sensitive tissues and insufficient insulin secretion from the pancreatic ß-cells to sustain the organism demand. Aging is a risk factor for the majority of the metabolic diseases including type 2 diabetes. With aging is observed a decline in all body function, due to decrease both in cell efficiency and renewal. The aim of this thesis was to investigate the potential role of microRNAs (short non- coding RNAs) in the pancreatic ß-cell dysfunction associated with aging. Microarray analysis of microRNA expression profile in pancreatic islets from 3 and 12 month old Wistar male rats revealed important changes in several microRNAs. To further study the link between those alterations and the decline of ß-cells, the changes observed in old rats were mimicked in immortalized ß-cell lines, primary young rat and human islets. Downregulation of miR-181a inhibited pancreatic ß-cell proliferation in response to proliferative drugs, whereas downregulation of miR-130b and upregulation of miR-383 protected pancreatic ß-cells from cytokine stimulated apoptosis. Interestingly, miR-34a augmented pancreatic ß-cell apoptosis and inhibited ß-cell proliferation in response to the proliferative chemicals Exendin-4, prolactin and PDGF-AA. This loss of replicative capacity is reminiscent of what we observed in pancreatic ß-cells isolated from 12 month old rats. We further observed a correlation between the inhibitory effect of miR-34a on pancreatic ß-cell proliferation and its direct interfering effect of this microRNA on PDGF-r-a, which was previously reported to be involved in the age-associated decline of pancreatic ß-cell proliferation. Interestingly miR-34a was upregulated in the liver and brain of 1 year old animals and positively correlated with age in pancreatic islets of normoglycemic human donors. These results suggest that miR-34a might be not only involved in the age-associated impairment of the pancreatic ß-cell functions, but also play a role in insulin target tissues and contribute to the aging phenotype on the organism level. To conclude, we have demonstrated that microRNAs are indeed involved in the age-associated pancreatic ß-cell dysfunction and they can play both beneficial and harmful roles in the context of pancreatic ß-cell aging.
Resumo:
E2F transcription factors are known regulators of the cell cycle, proliferation, apoptosis, and differentiation. Here, we reveal that E2F1 plays an essential role in liver physiopathology through the regulation of glycolysis and lipogenesis. We demonstrate that E2F1 deficiency leads to a decrease in glycolysis and de novo synthesis of fatty acids in hepatocytes. We further demonstrate that E2F1 directly binds to the promoters of key lipogenic genes, including Fasn, but does not bind directly to genes encoding glycolysis pathway components, suggesting an indirect effect. In murine models, E2F1 expression and activity increased in response to feeding and upon insulin stimulation through canonical activation of the CDK4/pRB pathway. Moreover, E2F1 expression was increased in liver biopsies from obese, glucose-intolerant humans compared with biopsies from lean subjects. Finally, E2f1 deletion completely abrogated hepatic steatosis in different murine models of nonalcoholic fatty liver disease (NAFLD). In conclusion, our data demonstrate that E2F1 regulates lipid synthesis and glycolysis and thus contributes to the development of liver pathology.
Resumo:
OBJECTIVE: To assess whether exposure to high altitude induces cognitive dysfunction in young healthy European children and adolescents during acute, short-term exposure to an altitude of 3450 m and in an age-matched European population permanently living at this altitude. STUDY DESIGN: We tested executive function (inhibition, shifting, and working memory), memory (verbal, short-term visuospatial, and verbal episodic memory), and speed processing ability in: (1) 48 healthy nonacclimatized European children and adolescents, 24 hours after arrival at high altitude and 3 months after return to low altitude; (2) 21 matched European subjects permanently living at high altitude; and (3) a matched control group tested twice at low altitude. RESULTS: Short-term hypoxia significantly impaired all but 2 (visuospatial memory and processing speed) of the neuropsychological abilities that were tested. These impairments were even more severe in the children permanently living at high altitude. Three months after return to low altitude, the neuropsychological performances significantly improved and were comparable with those observed in the control group tested only at low altitude. CONCLUSIONS: Acute short-term exposure to an altitude at which major tourist destinations are located induces marked executive and memory deficits in healthy children. These deficits are equally marked or more severe in children permanently living at high altitude and are expected to impair their learning abilities.