983 resultados para Helber, Tim
Resumo:
The process of recombinational repair is crucial for maintaining genomic integrity and generating biological diversity. In association with RuvB and RuvC, RuvA plays a central role in processing and resolving Holliday junctions, which are a critical intermediate in homologous recombination. Here, the cloning, purification and structure determination of the RuvA protein from Mycobacterium tuberculosis (MtRuvA) are reported. Analysis of the structure and comparison with other known RuvA proteins reveal an octameric state with conserved subunit-subunit interaction surfaces, indicating the requirement of octamer formation for biological activity. A detailed analysis of plasticity in the RuvA molecules has led to insights into the invariant and variable regions, thus providing a framework for understanding regional flexibility in various aspects of RuvA function.
Resumo:
BACKGROUND Polygenic risk scores comprising established susceptibility variants have shown to be informative classifiers for several complex diseases including prostate cancer. For prostate cancer it is unknown if inclusion of genetic markers that have so far not been associated with prostate cancer risk at a genome-wide significant level will improve disease prediction. METHODS We built polygenic risk scores in a large training set comprising over 25,000 individuals. Initially 65 established prostate cancer susceptibility variants were selected. After LD pruning additional variants were prioritized based on their association with prostate cancer. Six-fold cross validation was performed to assess genetic risk scores and optimize the number of additional variants to be included. The final model was evaluated in an independent study population including 1,370 cases and 1,239 controls. RESULTS The polygenic risk score with 65 established susceptibility variants provided an area under the curve (AUC) of 0.67. Adding an additional 68 novel variants significantly increased the AUC to 0.68 (P = 0.0012) and the net reclassification index with 0.21 (P = 8.5E-08). All novel variants were located in genomic regions established as associated with prostate cancer risk. CONCLUSIONS Inclusion of additional genetic variants from established prostate cancer susceptibility regions improves disease prediction. Prostate 75:1467–1474, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
Homozygosity has long been associated with rare, often devastating, Mendelian disorders1, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3, 4. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10−300, 2.1 × 10−6, 2.5 × 10−10 and 1.8 × 10−10, respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months’ less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5, 6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.
Resumo:
Accurate characterization and reporting of organic photovoltaic (OPV) device performance remains one of the important challenges in the field. The large spread among the efficiencies of devices with the same structure reported by different groups is significantly caused by different procedures and equipment used during testing. The presented article addresses this issue by offering a new method of device testing using “suitcase sample” approach combined with outdoor testing that limits the diversity of the equipment, and a strict measurement protocol. A round robin outdoor characterization of roll-to-roll coated OPV cells and modules conducted among 46 laboratories worldwide is presented, where the samples and the testing equipment were integrated in a compact suitcase that served both as a sample transportation tool and as a holder and test equipment during testing. In addition, an internet based coordination was used via plasticphotovoltaics.org that allowed fast and efficient communication among participants and provided a controlled reporting format for the results that eased the analysis of the data. The reported deviations among the laboratories were limited to 5% when compared to the Si reference device integrated in the suitcase and were up to 8% when calculated using the local irradiance data. Therefore, this method offers a fast, cheap and efficient tool for sample sharing and testing that allows conducting outdoor measurements of OPV devices in a reproducible manner.
Resumo:
Visual content is a critical component of everyday social media, on platforms explicitly framed around the visual (Instagram and Vine), on those offering a mix of text and images in myriad forms (Facebook, Twitter, and Tumblr), and in apps and profiles where visual presentation and provision of information are important considerations. However, despite being so prominent in forms such as selfies, looping media, infographics, memes, online videos, and more, sociocultural research into the visual as a central component of online communication has lagged behind the analysis of popular, predominantly text-driven social media. This paper underlines the increasing importance of visual elements to digital, social, and mobile media within everyday life, addressing the significant research gap in methods for tracking, analysing, and understanding visual social media as both image-based and intertextual content. In this paper, we build on our previous methodological considerations of Instagram in isolation to examine further questions, challenges, and benefits of studying visual social media more broadly, including methodological and ethical considerations. Our discussion is intended as a rallying cry and provocation for further research into visual (and textual and mixed) social media content, practices, and cultures, mindful of both the specificities of each form, but also, and importantly, the ongoing dialogues and interrelations between them as communication forms.
Resumo:
The 6-item Kessler Psychological Distress Scale (K6; Kessler et al., 2002) is a screener for psychological distress that has robust psychometric properties among adults. Given that a significant proportion of adolescents experience mental illness, there is a need for measures that accurately and reliably screen for mental disorders in this age group. This study examined the psychometric properties of the K6 in a large general population sample of adolescents (N = 4,434; mean age = 13.5 years; 44.6% male). Factor analyses were conducted to examine the dimensionality of the K6 in adolescents and to investigate sex-based measurement invariance. This study also evaluated the K6 as a predictor of scores on the Strengths and Difficulties Questionnaire (SDQ; Goodman, 1997). The K6 demonstrated high levels of internal consistency, with the 6 items loading primarily on 1 factor. Consistent with previous research, females reported higher mean levels of psychological distress when compared with males. The identification of sex-based measurement noninvariance in the item thresholds indicated that these mean differences most likely represented reporting bias in the K6 items rather than true differences in the underlying psychological distress construct. The K6 was a fair to good predictor of abnormal scores on the SDQ, but predictive utility was relatively low among males. Future research needs to focus on refining and augmenting the K6 scale to maximize its utility in adolescents. (PsycINFO Database Record (c) 2015 APA, all rights reserved)
Resumo:
Background: Malaria caused by the parasite Plasmodium falciparum is a major public health concern. The parasite lacks a functional tricarboxylic acid cycle, making glycolysis its sole energy source. Although parasite enzymes have been considered as potential antimalarial drug targets, little is known about their structural biology. Here we report the crystal structure of triosephosphate isomerase (TIM) from P. falciparum at 2.2 Angstrom resolution. Results: The crystal structure of P. falciparum TIM (PfTIM), expressed in Escherichia coli, was determined by the molecular replacement method using the structure of trypanosomal TIM as the starting model. Comparison of the PfTIM structure with other TIM structures, particularly human TIM, revealed several differences, In most TIMs the residue at position 183 is a glutamate but in PtTIM it is a leucine, This leucine residue is completely exposed and together with the surrounding positively charged patch, may be responsible for binding TIM to the erythrocyte membrane. Another interesting feature is the occurrence of a cysteine residue at the dimer interface of PfTIM (Cys13), in contrast to human TIM where this residue is a methionine. Finally, residue 96 of human TIM (Ser96), which occurs near the active site, has been replaced by phenylalanine in PfTIM.
Resumo:
This study analyses Augustine s concept of concupiscentia, or evil desire (together with two cognate terms, libido and cupiditas) in the context of his entire oeuvre. By the aid of systematic analysis, the concept and its development is explored in four distinct ways. It is claimed that Augustine used the concept of concupiscentia for several theological purposes, and the task of the study is to represent these distinct functions, and their connections to Augustine s general theological and philosophical convictions. The study opens with a survey on terminology. A general overview of the occurrences of the negatively connoted words for desire in Latin literature precedes a corresponding examination of Augustine s own works. In this introductory chapter it is shown that, despite certain preferences in the uses of the words, a sufficient degree of synonymy reigns so as to allow an analysis of the concept without tightly discriminating between the terms. The theological functions of concupiscentia with its distinct contexts are analysed in separate chapters. The function of concupiscentia as a divine punishment is explored first (Ch 3). It is seen how Augustine links together concupiscentia and ideas about divine justice, and finally suggests that in the inordinate, psychologically experienced sexual desire, the original theological disobedience of Adam and Eve can be perceived. Augustine was criticized for this solution already in his own times, and the analysis of the function of concupiscentia as a divine punishment ends in a discussion on the critical response of punitive concupiscentia by Julian of Aeclanum. Augustine also attached to concupiscentia another central theological function by viewing evil desire as an inward originating cause for all external evil actions. In the study, this function is analysed by surveying two formally distinct images of evil desire, i.e. as the root (radix) of all evil, and as a threefold (triplex) matrix of evil actions (Ch 4). Both of these images were based on a single verse of the Bible (1 Jn 2, 16 and 1 Tim 6, 10). This function of concupiscentia was formed both parallel to, and in answer to, Manichaean insights into concupiscentia. Being familiar with the traditional philosophical discussions on the nature and therapy of emotions, Augustine situated concupiscentia also into this context. It is acknowledged that these philosophical traditions had an obvious impact into his way of explaining psychological processes in connection with concupiscentia. Not only did Augustine implicitly receive and exploit these traditions, but he also explicitly moulded and criticized them in connection with concupiscentia. Eventually, Augustine conceives the philosophical traditions of emotions as partly useful but also partly inadequate to deal with concupiscentia (Ch 5). The role of concupiscentia in connection to divine grace and Christian renewal is analysed in the final chapter of the study. Augustine s gradual development in internalizing the effects of concupiscentia also into the life of a baptized Christian are elucidated, as are the strong limitations and mitigations Augustine makes to the concept when attaching it into the life under grace (sub gratia). A crucial part in the development of this function is played by Augustine s changing interpretation of Rom 7, and the way concupiscentia appears in Augustine s readings of this text is therefore also analysed. As a result of the analysis of these four distinct functions and contexts of concupiscentia, it is concluded that Augustine s concept of concupiscentia is fairly tightly and coherently connected to his views of central theological importance. Especially the functions of concupiscentia as a punishment and the function of concupiscentia in Christian renewal were both tightly interwoven into Augustine s view of God s being and God s grace. The study shows the importance of reading Augustine s discussions on evil desire with a constant awareness of their role in their larger context, that is, of their function in each situation. The study warns against too simplistic and unifying readings of Augustine s concupiscentia, emphasizing the need to acknowledge both the necessitating, sinful aspects of concupiscentia, and the domesticated features of concupiscentia during Christian renewal.
Resumo:
Background: Stabilization strategies adopted by proteins under extreme conditions are very complex and involve various kinds of interactions. Recent studies have shown that a large proportion of proteins have their N- and C-terminal elements in close contact and suggested they play a role in protein folding and stability. However, the biological significance of this contact remains elusive. Methodology: In the present study, we investigate the role of N- and C-terminal residue interaction using a family 10 xylanase (BSX) with a TIM-barrel structure that shows stability under high temperature,alkali pH, and protease and SDS treatment. Based on crystal structure,an aromatic cluster was identified that involves Phe4, Trp6 and Tyr343 holding the Nand C-terminus together; this is a unique and important feature of this protein that might be crucial for folding and stabilityunder poly-extreme conditions. Conclusion: A series of mutants was created to disrupt this aromatic cluster formation and study the loss of stability and function under given conditions. While the deletions of Phe4 resulted in loss of stability, removal of Trp6 and Tyr343 affected in vivo folding and activity. Alanine substitution with Phe4, Trp6 and Tyr343 drastically decreased stability under all parameters studied. Importantly,substitution of Phe4 with Trp increased stability in SDS treatment.Mass spectrometry results of limited proteolysis further demonstrated that the Arg344 residue is highly susceptible to trypsin digestion in sensitive mutants such as DF4, W6A and Y343A, suggesting again that disruption of the Phe4-Trp6-Tyr343 (F-W-Y) cluster destabilizes the N-and C-terminal interaction. Our results underscore the importance of N- and C-terminal contact through aromatic interactions in protein folding and stability under extreme conditions, and these results may be useful to improve the stability of other proteins under suboptimal conditions.
Resumo:
The role of inter-subunit interactions in maintaining optimal catalytic activity in triosephosphate isomerase (TIM) has been probed, using the Plasmodium falciparum enzyme as a model. Examination of subunit interface contacts in the crystal structures suggests that residue 75 (Thr, conserved) and residue 13 (Cys, variable) make the largest number of inter-subunit contacts. The mutants Cys13Asp (C13D) and Cys13Glu (C13E) have been constructed and display significant reduction in catalytic activity when compared with wild-type (WT) enzyme (similar to 7.4-fold decrease in k(cat) for the C13D and similar to 3.3-fold for the C13E mutants). Analytical gel filtration demonstrates that the C13D mutant dissociates at concentrations < 1.25 mu M, whereas the WT and the C13E enzymes retain the dimeric structure. The order of stability of the mutants in the presence of chemical denaturants, like urea and guanidium chloride, is WT > Cys13Glu > Cys13Asp. Irreversible thermal precipitation temperatures follow the same order as well. Modeling studies establish that the Cys13Asp mutation is likely to cause a significantly greater structural perturbation than Cys13Glu. Analysis of sequence and structural data for TIMs from diverse sources suggests that residues 13 and 82 form a pair of proximal sites, in which a limited number of residue pairs may be accommodated.
Resumo:
Cys126 is a completely conserved residue in triosephosphate isomerase that is proximal to the active site but has been ascribed no specific role in catalysis. A previous study of the C126S and C126A mutants of yeast TIM reported substantial catalytic activity for the mutant enzymes, leading to the suggestion that this residue is implicated in folding and stability [Gonzalez-Mondragon E et al. (2004) Biochemistry43, 3255–3263]. We re-examined the role of Cys126 with the Plasmodium falciparum enzyme as a model. Five mutants, C126S, C126A, C126V, C126M, and C126T, were characterized. Crystal structures of the 3-phosphoglycolate-bound C126S mutant and the unliganded forms of the C126S and C126A mutants were determined at a resolution of 1.7–2.1 Å. Kinetic studies revealed an approximately five-fold drop in kcat for the C126S and C126A mutants, whereas an approximately 10-fold drop was observed for the other three mutants. At ambient temperature, the wild-type enzyme and all five mutants showed no concentration dependence of activity. At higher temperatures (> 40 °C), the mutants showed a significant concentration dependence, with a dramatic loss in activity below 15 μm. The mutants also had diminished thermal stability at low concentration, as monitored by far-UV CD. These results suggest that Cys126 contributes to the stability of the dimer interface through a network of interactions involving His95, Glu97, and Arg98, which form direct contacts across the dimer interface.
Resumo:
DatabaseStructural data are available in the Protein Data Bank under the accession numbers
Resumo:
We present the report of the B physics working group of the Workshop on High Energy Physics Phenomenology (WHEPP-XI), held at the Physical Research Laboratory, Ahmedabad, in January 2010.
Resumo:
An analysis of 503 available triosephosphate isomerase sequences revealed nine fully conserved residues. Of these, four residues-K12, H95, E97 and E165-are capable of proton transfer and are all arrayed around the dihydroxyacetone phosphate substrate in the three-dimensional structure. Specific roles have been assigned to the residues K12, H95 and E165, but the nature of the involvement of E97 has not been established. Kinetic and structural characterization is reported for the E97Q and E97D mutants of Plasmodium falciparum triosephosphate isomerase (Pf TIM). A 4000-fold reduction in k(cat) is observed for E97Q, whereas the E97D mutant shows a 100-fold reduction. The control mutant, E165A, which lacks the key catalytic base, shows an approximately 9000-fold drop in activity. The integrity of the overall fold and stability of the dimeric structure have been demonstrated by biophysical studies. Crystal structures of E97Q and E97D mutants have been determined at 2.0 angstrom resolution. In the case of the isosteric replacement of glutamic acid by glutamine in the E97Q mutant a large conformational change for the critical K12 side chain is observed, corresponding to a trans-to-gauche transition about the C gamma-C delta (chi(3)) bond. In the E97D mutant, the K12 side chain maintains the wild-type orientation, but the hydrogen bond between K12 and D97 is lost. The results are interpreted as a direct role for E97 in the catalytic proton transfer cycle. The proposed mechanism eliminates the need to invoke the formation of the energetically unfavourable imidazolate anion at H95, a key feature of the classical mechanism.