994 resultados para Heat integration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Packaging Research Center has been developing next generation system-on-a-package (SOP) technology with digital, RF, optical, and sensor functions integrated in a single package/module. The goal of this effort is to develop a platform substrate technology providing very high wiring density and embedded thin film passive and active components using PWB compatible materials and processes. The latest SOP baseline process test vehicle has been fabricated on novel Si-matched CTE, high modulus C-SiC composite core substrates using 10mum thick BCB dielectric films with loss tangent of 0.0008 and dielectric constant of 2.65. A semi-additive plating process has been developed for multilayer microvia build-up using BCB without the use of any vacuum deposition or polishing/CMP processes. PWB and package substrate compatible processes such as plasma surface treatment/desmear and electroless/electrolytic pulse reverse plating was used. The smallest line width and space demonstrated in this paper is 6mum with microvia diameters in the 15-30mum range. This build-up process has also been developed on medium CTE organic laminates including MCL-E-679F from Hitachi Chemical and PTFE laminates with Cu-Invar-Cu core. Embedded decoupling capacitors with capacitance density of >500nF/cm2 have been integrated into the build-up layers using sol-gel synthesized BaTiO3 thin films (200-300nm film thickness) deposited on copper foils and integrated using vacuum lamination and subtractive etch processes. Thin metal alloy resistor films have been integrated into the SOP substrate using two methods: (a) NiCrAlSi thin films (25ohms per square) deposited on copper foils (Gould Electronics) laminated on the build-up layers and two step etch process for resistor definition, and (b) electroless plated Ni-W-P thin films (70 ohms to few Kohms per square) on the BCB dielectric by plasma surface treatment and activation. The electrical design and build-up layer structure along- - with key materials and processes used in the fabrication of the SOP4 test vehicle were presented in this paper. Initial results from the high density wiring and embedded thin film components were also presented. The focus of this paper is on integration of materials, processes and structures in a single package substrate for system-on-a-package (SOP) implementation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical study of conjugate natural convection and surface radiation in a horizontal hexagonal sheath housing 19 solid heat generating rods with cladding and argon as the fill gas, is performed. The natural convection in the sheath is driven by the volumetric heat generation in the solid rods. The problem is solved using the FLUENT CFD code. A correlation is obtained to predict the maximum temperature in the rod bundle for different pitch-to-diameter ratios and heat generating rates. The effective thermal conductivity is related to the heat generation rate, maximum temperature and the sheath temperature. Results are presented for the dimensionless maximum temperature, Rayleigh number and the contribution of radiation with changing emissivity, total wattage and the pitch-to-diameter ratio. In the simulation of a larger system that contains a rod bundle, the effective thermal conductivity facilitates simplified modelling of the rod bundle by treating it as a solid of effective thermal conductivity. The parametric studies revealed that the contribution of radiation can be 38-65% of the total heat generation, for the parameter ranges chosen. Data for critical Rayleigh number above which natural convection comes into effect is also presented. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work is an attempt to study crack initiation in nuclear grade, 9Cr-1Mo ferritic steel using AE as an online NDE tool. Laboratory experiments were conducted on 5 heat treated Compact Tension (CT) specimens made out of nuclear grade 9Cr-1Mo ferritic steel by subjecting them to cyclic tensile load. The CT Specimens were of 12.5 mm thickness. The Acoustic emission test system was setup to acquire the data continuously during the test by mounting AE sensor on one of the surfaces of the specimen. This was done to characterize AE data pertaining to crack initiation and then discriminate the samples in terms of their heat treatment processes based on AE data. The AE signatures at crack initiation could conclusively bring to fore the heat treatment distinction on a sample to sample basis in a qualitative sense.Thus, the results obtained through these investigations establish a step forward in utilizing AE technique as an on-line measurement tool for accurate detection and understanding of crack initiation and its profile in 9Cr-1Mo nuclear grade steel subjected to different processes of heat treatment.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microscopic electron theory based on the pseudopotential formalism has been applied to the calculation of the heats of mixing and of activities in liquid Al·Sn alloys. The calculated values for both quantities were found to be in reasonable agreement with ,the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid solutions of Fe304-FeV204 and Fe304-FeCr204 were prepared and equilibrated with Pt under controlled streams of CO/CO, gas mixtures at 1673 K. The concentration of Fe in Pt was used to determine the activity of Fe304 in the solid solutions. The activity of the second component was calculated by Gibbshhem integration. From these data, the Gibbs energy of mixing was derived for both systems. The experimental results and theoretical values which are determined from calculated cation distribution compare favorably in the case of vanadite solid solutions but not in the case of chromite solid solutions. The difference is attributed to a heat term arising from lattice distortion due to cation size difference. The positive heat of mixing will give rise to a miscibility gap in the system Fe304-FeCr204 at lower temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The critical properties of orthorhombic Pr(0.6)Sr(0.4)MnO(3) single crystals were investigated by a series of static magnetization measurements along the three different crystallographic axes as well as by specific heat measurements. A careful range-of-fitting-analysis of the magnetization and susceptibility data obtained from the modified Arrott plots shows that Pr(0.6)Sr(0.4)MnO(3) has a very narrow critical regime. Nevertheless, the system belongs to the three-dimensional (3D) Heisenberg universality class with short-range exchange. The critical exponents obey Widom scaling and are in excellent agreement with the single scaling equation of state M(H,epsilon) = vertical bar epsilon vertical bar(beta) f(+/-)(H/vertical bar epsilon vertical bar((beta+gamma)); with f(+) for T > T(c) and f(-) for T < T(c). A detailed analysis of the specific heat that account for all relevant contributions allows us to extract and analyze the contribution related to the magnetic phase transition. The specific heat indicates the presence of a linear electronic term at low temperatures and a prominent contribution from crystal field excitations of Pr. A comparison with data from literature for PrMnO(3) shows that a Pr-Mn magnetic exchange is responsible for a sizable shift in the lowest lying excitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The composition, structural, electrical, and optical properties of as-grown and heat treated tin-mono-sulfide (SnS) ultra-thin films have been studied. The ultra-thin SnS films were prepared on glass substrates by thermal resistive evaporation technique. All the SnS films contained nanocrystallites and exhibited p-type conductivity with a low Hall-mobility, <50 cm(2)/Vs. All these films are highly tin rich in nature and exhibited orthorhombic crystal structure. As compared to other films, the SnS films annealed at 300 degrees C showed a low electrical resistivity of similar to 36 Omega cm with an optical band gap of similar to 1.98 eV. The observed electrical and optical properties of all the films are discussed based on their composition and structural parameters. These nanocrystalline ultra-thin SnS films could be expected as a buffer layer for the development of tandem solar cell devices due to their low-resistivity and high absorbability with an optimum band gap. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study of activity of cloned promoters in slow-growing Mycobacterium tuberculosis during long-term growth conditions in vitro or inside macrophages, requires a genome-integration proficient promoter probe vector, which can be stably maintained even without antibiotics, carrying a substrate-independent, easily scorable and highly sensitive reporter gene. In order to meet this requirement, we constructed pAKMN2, which contains mycobacterial codon-optimized gfpm2+ gene, coding for GFPm2+ of highest fluorescence reported till date, mycobacteriophage L5 attP-int sequence for genome integration, and a multiple cloning site. pAKMN2 showed stable integration and expression of GFPm2+ from M. tuberculosis and M. smegmatis genome. Expression of GFPm2+, driven by the cloned minimal promoters of M. tuberculosis cell division gene, ftsZ (MtftsZ), could be detected in the M. tuberculosis/pAKMN2-promoter integrants, growing at exponential phase in defined medium in vitro and inside macrophages. Stable expression from genome-integrated format even without antibiotic, and high sensitivity of detection by flow cytometry and fluorescence imaging, in spite of single copy integration, make pAKMN2 useful for the study of cloned promoters of any mycobacterial species under long-term in vitro growth or stress conditions, or inside macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The change in thermodynamic quantities (e. g., entropy, specific heat etc.) by the application of magnetic field in the case of the high-T-c superconductor YBCO system is examined phenomenological by the Ginzburg-Landau theory of anisotropic type-II superconductors. An expression for the change in the entropy (Delta S) and change in specific heat (Delta C) in a magnetic field for any general orientation of an applied magnetic field B-a with respect to the crystallographic c-axis is obtained. The observed large reduction of specific heat anomaly just below the superconducting transition and the observed variation of entropy with magnetic field are explained quantitatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an electrochemical route for the integration of graphene with light-sensitive copper-based alloys used in optoelectronic applications. Graphene grown using chemical vapor deposition (CVD) transferred to glass is found to be a robust substrate on which photoconductive CuxS films of 1-2 mu m thickness can be deposited. The effect of growth parameters on the morphology and photoconductivity of CuxS films is presented. Current-voltage (I-V) characterization and photoconductivity decay experiments are performed with graphene as one contact and silver epoxy as the other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of coolant gas injection in the stagnation region on the surface heat transfer rates and aerodynamic drag for a large angle blunt body flying at hypersonic Mach number is reported for two stagnation enthalpies. A 60° apex-angle blunt cone model is employed for this purpose with air injection at the nose through a hole of 2mm diameter. The convective surface heating rates and aerodynamic drag are measured simultaneously using surface mounted platinum thin film sensors and internally mounted accelerometer balance system, respectively. About 35–40% reduction in surface heating rates is observed in the vicinity of stagnation region whereas 15–25% reduction in surface heating rates is felt beyond the stagnation region at stagnation enthalpy of 1.6MJ/kg. The aerodynamic drag expressed in terms of drag coefficient is found to increase by 20% due to the air injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable bench mark experimental database in the separated hypersonic flow regime is necessary to validate high resolution CFD codes. In this paper we report the surface pressure and heat transfer measurements carried out on double cones (first cone semi-apex angle = 15, 25 deg.; second cone semi-apex angle= 35, 68 deg.) at hypersonic speeds that will be useful for CFD code validation studies. The surface pressure measurements are carried out at nominal Mach number of 8.35 in the IISc hypersonic wind tunnel. On the other hand the surface heat transfer measurements are carried out at a nominal Mach number of 5.75 in the IISc hypersonic shock tunnel. The flow separation point on the first cone, flow reattachment on the second cone and the wild fluctuation of the transmitted shock on the second cone surface (25/68 deg. double cone) in the presence of severe adverse pressure gradient are some of the flow features captured in the measurements. The results from the CFD studies indicate good agreement with experiments in the attached flow regime while considerable differences are noticeable in the separated flow regime.