963 resultados para He-jet recoil tape transport system
Resumo:
Determining groundwater flow paths of infiltrated river water is necessary for studying biochemical processes in the riparian zone, but their characterization is complicated by strong temporal and spatial heterogeneity. We investigated to what extent repeat 3D surface electrical resistance tomography (ERT) can be used to monitor transport of a salt-tracer plume under close to natural gradient conditions. The aim is to estimate groundwater flow velocities and pathways at a site located within a riparian groundwater system adjacent to the perialpine Thur River in northeastern Switzerland. Our ERT time-lapse images provide constraints on the plume's shape, flow direction, and velocity. These images allow the movement of the plume to be followed for 35 m. Although the hydraulic gradient is only 1.43 parts per thousand, the ERT time-lapse images demonstrate that the plume's center of mass and its front propagate with velocities of 2x10(-4) m/s and 5x10(-4) m/s, respectively. These velocities are compatible with groundwater resistivity monitoring data in two observation wells 5 m from the injection well. Five additional sensors in the 5-30 m distance range did not detect the plume. Comparison of the ERT time-lapse images with a groundwater transport model and time-lapse inversions of synthetic ERT data indicate that the movement of the plume can be described for the first 6 h after injection by a uniform transport model. Subsurface heterogeneity causes a change of the plume's direction and velocity at later times. Our results demonstrate the effectiveness of using time-lapse 3D surface ERT to monitor flow pathways in a challenging perialpine environment over larger scales than is practically possible with crosshole 3D ERT.
Resumo:
The computer code system PENELOPE (version 2008) performs Monte Carlo simulation of coupledelectron-photon transport in arbitrary materials for a wide energy range, from a few hundred eV toabout 1 GeV. Photon transport is simulated by means of the standard, detailed simulation scheme.Electron and positron histories are generated on the basis of a mixed procedure, which combinesdetailed simulation of hard events with condensed simulation of soft interactions. A geometry packagecalled PENGEOM permits the generation of random electron-photon showers in material systemsconsisting of homogeneous bodies limited by quadric surfaces, i.e., planes, spheres, cylinders, etc. Thisreport is intended not only to serve as a manual of the PENELOPE code system, but also to provide theuser with the necessary information to understand the details of the Monte Carlo algorithm.
Resumo:
Ion channels and transporters play a critical role in ion and fluid homeostasis and thus in normal animal physiology and pathology. Tight regulation of these transmembrane proteins is therefore essential. In recent years, many studies have focused their attention on the role of the ubiquitin system in regulating ion channels and transporters, initialed by the discoveries of the role of this system in processing of Cystic Fibrosis Transmembrane Regulator (CFTR), and in regulating endocytosis of the epithelial Na(+) channel (ENaC) by the Nedd4 family of ubiquitin ligases (mainly Nedd4-2). In this review, we discuss the role of the ubiquitin system in ER Associated Degradation (ERAD) of ion channels, and in the regulation of endocytosis and lysosomal sorting of ion channels and transporters, focusing primarily in mammalian cells. We also briefly discuss the role of ubiquitin like molecules (such as SUMO) in such regulation, for which much less is known so far.
Resumo:
The addition of L-Glutamate (L-GLU) and L-Hethionine ~ulfoximine (L-HSO) to mechanically isolated. photosynthetically competent, Asparagus sprengeri mesophyll cells ~u~pended in 1mM CaS04 cau~ed an immediate transient alkalinization of the cell su~pension medium in both the light and dark. The alkalinization response was specific and stereospecific as none of the L-isomers of the other 19 protein amino acids tested or D-GLU gave this response. Uptake of 14C-L-GLU was stimulated by the light. The addition of non-radioactive L-GLU. or L-GLU analogs together with 14C-L-GLU showed that only L-GLU and L-HSO stimulated alkalinization whilst inhibiting the uptake of 14C-L-GLU. Both the L-GLU dependent alkalinization and the upt~ke of 14C-L-GLU were stimulated when the external pH was decreased from 6.5 to 5.5. Increasing external K+ concentrations inhibited the uptake of 14C-L-GLU. Fusicoccin (FC) stimulated uptake. The L-GLU dependent alkalinization re~ponse exhibited monophasic saturation kinetics while the uptake of 14C-L-GLU exhibited biphasic saturation kinetics. In addition to a saturable component. the uptake kinetics also showed a linear component of uptake. Addition of L-GLU and L-MSO caused internal acidification of the cell as measured by a change in the distribution of 14C-DMO. There was no change in K+ efflux when L-GLU was added. A H+ to L-GLUinflux stoichiometry of 3:1 wa~ mea~ured at an external I.-GLU concentration of O.5mM and increased with increasing external 13 L-QLU concentration. Metabolism of L-GLU was detected manometrlcally by observing an increase in COa evolution upon the addition of L-QLU and by detection of i*C02 evolution upon the addition of »*C-L-GLU. »*C02 evolution was higher in the dark than in the light. The data are consistent with the operation of a H+/L-QLO cotransport system. The data also show that attempts to quantify the stoichlometry of the process were complicated by the metabolism of L-GLU.
Resumo:
ACCURATE sensing of vehicle position and attitude is still a very challenging problem in many mobile robot applications. The mobile robot vehicle applications must have some means of estimating where they are and in which direction they are heading. Many existing indoor positioning systems are limited in workspace and robustness because they require clear lines-of-sight or do not provide absolute, driftfree measurements.The research work presented in this dissertation provides a new approach to position and attitude sensing system designed specifically to meet the challenges of operation in a realistic, cluttered indoor environment, such as that of an office building, hospital, industrial or warehouse. This is accomplished by an innovative assembly of infrared LED source that restricts the spreading of the light intensity distribution confined to a sheet of light and is encoded with localization and traffic information. This Digital Infrared Sheet of Light Beacon (DISLiB) developed for mobile robot is a high resolution absolute localization system which is simple, fast, accurate and robust, without much of computational burden or significant processing. Most of the available beacon's performance in corridors and narrow passages are not satisfactory, whereas the performance of DISLiB is very encouraging in such situations. This research overcomes most of the inherent limitations of existing systems.The work further examines the odometric localization errors caused by over count readings of an optical encoder based odometric system in a mobile robot due to wheel-slippage and terrain irregularities. A simple and efficient method is investigated and realized using an FPGA for reducing the errors. The detection and correction is based on redundant encoder measurements. The method suggested relies on the fact that the wheel slippage or terrain irregularities cause more count readings from the encoder than what corresponds to the actual distance travelled by the vehicle.The application of encoded Digital Infrared Sheet of Light Beacon (DISLiB) system can be extended to intelligent control of the public transportation system. The system is capable of receiving traffic status input through a GSM (Global System Mobile) modem. The vehicles have infrared receivers and processors capable of decoding the information, and generating the audio and video messages to assist the driver. The thesis further examines the usefulness of the technique to assist the movement of differently-able (blind) persons in indoor or outdoor premises of his residence.The work addressed in this thesis suggests a new way forward in the development of autonomous robotics and guidance systems. However, this work can be easily extended to many other challenging domains, as well.
Resumo:
A new system for the generation of hydrodynamic modulated voltammetry (HMV) is presented. This system consists of an oscillating jet produced through the mechanical vibration of a large diaphragm. The structure of the cell is such that a relatively small vibration is transferred to a large fluid flow at the jet outlet. Positioning of an electrode (Pt, 0.5 mm or 25 mu m diameter) over the exit of this jet enables the detection of the modulated flow of liquid. While this flow creates modest mass transfer rates (time averaged similar to 0.015 cm s(-1)) it can also be used to create a HMV system where a 'lock-in' approach is adopted to investigate the redox chemistry in question. This is demonstrated for the Fe(CN)(6)(3-/4-) redox system. Here 'lock-in' to the modulated hydrodynamic signal is achieved through the deployment of bespoke software. The apparatus and procedure is shown to produce a simple and efficient way to obtain the desired signal. In addition the spatial variation of the HMV signal, phase correction and time averaged current with respect to the jet orifice is presented. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The electrochemistry of nanostructured electrodes is investigated using hydrodynamic modulated voltammetry (HMV). Here a liquid crystal templating process is used to produce a platinum modified electrode with a relatively high surface area (Roughness factor, Rf = 42.4). The electroreduction of molecular oxygen at a nanostructured platinum surface is used to demonstrate the ability of HMV to discriminate between Faradaic and non-Faradaic electrode reactions. The HMV approach shows that the reduction of molecular oxygen shows considerable hysteresis correlating with the formation and stripping of oxide species at the platinum surface. Without the HMV analysis it is difficult to discern the same detail under the conditions employed. In addition the detection limit of the apparatus is explored and shown, under ideal conditions, to be of the order of 45 nmol dm(-3) employing [Fe(CN)(6)](4-) as a test species. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Common approaches to the simulation of borehole heat exchangers (BHEs) assume heat transfer in circulating fluid and grout to be in a quasi-steady state and ignore fluctuations in fluid temperature due to transport of the fluid around the loop. However, in domestic ground source heat pump (GSHP) systems, the heat pump and circulating pumps switch on and off during a given hour; therefore, the effect of the thermal mass of the circulating fluid and the dynamics of fluid transport through the loop has important implications for system design. This may also be important in commercial systems that are used intermittently. This article presents transient simulation of a domestic GSHP system with a single BHE using a dynamic three-dimensional (3D) numerical BHE model. The results show that delayed response associated with the transit of fluid along the pipe loop is of some significance in moderating swings in temperature during heat pump operation. In addition, when 3D effects are considered, a lower heat transfer rate is predicted during steady operations. These effects could be important when considering heat exchanger design and system control. The results will be used to develop refined two-dimensional models.
Resumo:
Within the project SPURT (trace gas measurements in the tropopause region) a variety of trace gases have been measured in situ in order to investigate the role of dynamical and chemical processes in the extra-tropical tropopause region. In this paper we report on a flight on 10 November 2001 leading from Hohn, Germany (52�N) to Faro, Portugal (37�N) through a strongly developed deep stratospheric intrusion. This streamer was associated with a large convective system over the western Mediterranean with potentially significant troposphere-to-stratosphere transport. Along major parts of the flight we measured unexpectedly high NOy mixing ratios. Also H2O mixing ratios were significantly higher than stratospheric background levels confirming the extraordinary chemical signature of the probed air masses in the interior of the streamer. Backward trajectories encompassing the streamer enable to analyze the origin and physical characteristics of the air masses and to trace troposphere-to-stratosphere transport. Near the western flank of the streamer features caused by long range transport, such as tropospheric filaments characterized by sudden drops in the O3 and NOy mixing ratios and enhanced CO and H2O can be reconstructed in great detail using the reverse domain filling technique. These filaments indicate a high potential for subsequent mixing with the stratospheric air. At the south-western edge of the streamer a strong gradient in the NOy and the O3 mixing ratios coincides very well with a sharp gradient in potential vorticity in the ECMWF fields. In contrast, in the interior of the streamer the observed highly elevated NOy and H2O mixing ratios up to a potential temperature level of 365K and potential vorticity values of maximum 10 PVU cannot be explained in terms of resolved troposphere-to-stratosphere transport along the backward trajectories. Also mesoscale simulations with a High Resolution Model reveal no direct evidence for convective H2O injection up to this level. Elevated H2O mixing ratios in the ECMWF and HRM are seen only up to about tropopause height at 340 hPa and 270 hPa, respectively, well below flight altitude of about 200 hPa. However, forward tracing of the convective influence as identified by satellite brightness temperature measurements and counts of lightning strokes shows that during this part of the flight the aircraft was closely following the border of an air mass which was heavily impacted by convective activity over Spain and Algeria. This is evidence that deep convection at mid-latitudes may have a large impact on the tracer distribution of the lowermost stratosphere reaching well above the thunderstorms anvils as claimed by recent studies using cloud-resolving models.
Resumo:
A method of classifying the upper tropospheric/lower stratospheric (UTLS) jets has been developed that allows satellite and aircraft trace gas data and meteorological fields to be efficiently mapped in a jet coordinate view. A detailed characterization of multiple tropopauses accompanies the jet characterization. Jet climatologies show the well-known high altitude subtropical and lower altitude polar jets in the upper troposphere, as well as a pattern of concentric polar and subtropical jets in the Southern Hemisphere, and shifts of the primary jet to high latitudes associated with blocking ridges in Northern Hemisphere winter. The jet-coordinate view segregates air masses differently than the commonly-used equivalent latitude (EqL) coordinate throughout the lowermost stratosphere and in the upper troposphere. Mapping O3 data from the Aura Microwave Limb Sounder (MLS) satellite and the Winter Storms aircraft datasets in jet coordinates thus emphasizes different aspects of the circulation compared to an EqL-coordinate framework: the jet coordinate reorders the data geometrically, thus highlighting the strong PV, tropopause height and trace gas gradients across the subtropical jet, whereas EqL is a dynamical coordinate that may blur these spatial relationships but provides information on irreversible transport. The jet coordinate view identifies the concentration of stratospheric ozone well below the tropopause in the region poleward of and below the jet core, as well as other transport features associated with the upper tropospheric jets. Using the jet information in EqL coordinates allows us to study trace gas distributions in regions of weak versus strong jets, and demonstrates weaker transport barriers in regions with less jet influence. MLS and Atmospheric Chemistry Experiment-Fourier Transform Spectrometer trace gas fields for spring 2008 in jet coordinates show very strong, closely correlated, PV, tropopause height and trace gas gradients across the jet, and evidence of intrusions of stratospheric air below the tropopause below and poleward of the subtropical jet; these features are consistent between instruments and among multiple trace gases. Our characterization of the jets is facilitating studies that will improve our understanding of upper tropospheric trace gas evolution.
Resumo:
The flow patterns generated by a pulsating jet used to study hydrodynamic modulated voltammetry (HMV) are investigated. It is shown that the pronounced edge effect reported previously is the result of the generation of a vortex ring from the pulsating jet. This vortex behaviour of the pulsating jet system is imaged using a number of visualisation techniques. These include a dye system and an electrochemically generated bubble stream. In each case a toroidal vortex ring was observed. Image analysis revealed that the velocity of this motion was of the order of 250 mm s−1 with a corresponding Reynolds number of the order of 1200. This motion, in conjunction with the electrode structure, is used to explain the strong ‘ring and halo’ features detected by electrochemical mapping of the system reported previously.
Resumo:
Conservation of water demands that meridional ocean and atmosphere freshwater transports (FWT) are of equal magnitude but opposite in direction. This suggests that the atmospheric FWT and its associated latent heat (LH) transport could be thought of as a \textquotedblleft coupled ocean/atmosphere mode\textquotedblright. But what is the true nature of this coupling? Is the ocean passive or active? Here we analyze a series of simulations with a coupled ocean-atmosphere-sea ice model employing highly idealized geometries but with markedly different coupled climates and patterns of ocean circulation. Exploiting streamfunctions in specific humidity coordinates for the atmosphere and salt coordinates for the ocean to represent FWT in their respective medium, we find that atmospheric FWT/LH transport is essentially independent of the ocean state. Ocean circulation and salinity distribution adjust to achieve a return freshwater pathway demanded of them by the atmosphere. So, although ocean and atmosphere FWTs are indeed coupled by mass conservation, the ocean is a passive component acting as a reservoir of freshwater.