997 resultados para Growing stage
Resumo:
The study of the length weight relationship is highly useful to the fishery biologists in the study of population dynamics of fish and for determining the pattern of growth of stock. The parabolic equation for the length-weight relationship of Drepane punctata juveniles off the Bombay coast, expresses the value of "n" 2.83, indicating that the growth rate is less than the cube length.
Resumo:
Ethylestrenol (17β Hydroxy-17alpha-ethyl-estr-4-en-3-one) and Stanozolal (17β-Hydroxy-17alpha-methyl 1-5 alpha-androstano-(3,2-C)-pyrazole), both synthetic androgenic steroids, were fed via diet at 3ppm to the fry of catla, rohu and silver carp which were reared up to fingerling stage over a period of 167-172 days in earthen ponds. Ethylestrenol enhanced growth in silver carp and rohu but retarded growth in catla. Stanozolal depressed growth in all the 3 species. Length-weight relationship for these fry had been worked out and the relative condition factor in all the cases was very close to or slightly above 1.0.
Resumo:
Fourteen commonly occurring species of marine benthic algae, i.e., Colpomenia sinuosa (Mertens ex Roth) Derbes et Solier, Dictyopteris australis (Sonder) Askenasy, Dictyota dichotoma (Hudson) Lamouroux D. dumosa Børgesen, D. hauckiana Nizamuddin, D. indica Sonder, D. maxima Zanardini, Hincksia mitchelliae (Harvey) Silva, Jolyna laminarioides Guimardes in Guimarâes et al., Padina tetrastromatica Hauck, Sargassum tenerrinum J. Agardh, Spatoglossum variabille Figari et De Notaris, Stoechospermum marginatum (C. Agardh) Kültzing and Stokeyia indica Thivy et Doshi, belonging to all three classes of Phaeophyta, were collected from coastal areas near Karachi, Pakistan and their taxonomy determined. Although all are taxonomically known species, Dictyota dichotoma, D. dumosa, D. hauckiana, D. indica, D. maxima, Jolyna laminarioides, Padina tetrastromatica, Sargassum tenerritnum and Stokeyia indica are described for the first time from the coast of Pakistan.
Resumo:
Two synthetic androgenic steroids, Ethylestrenol (17 β - Hydroxy - 17 α ethyl - estr - 4 - en - 3 - one) and Stanozolal (17 β - Hydroxy- 17 α - methyl - 5 a - androstano - 3, 2 - C - pyrazole) were fed via diet at 3 ppm to the spawn of Rohu and Mrigal which were reared up to fry stage over a period of 15 days in earthen carp nurseries. Both hormones enhanced growth of spawn. A maximum of 25.78% increase in length and 25.69% increase in weight as compared to the controls has been recorded. Growth rate was recorded to be 0.8 mm & 2.48 mg/day (control), and 1.13 mm & 2.67 mg/day (Stanozolol treated) in case of Mrigal spawn; and 0.91 mm & 2.39 mg/day (control), 1.12 mm & 2.90 mg/day (Ethylestrenol treated), and 1.10 mm & 2.57 mg/day (Stanozolol treated) in case of Rohu spawn. A decrease in the values of Relative Condition Factor upon hormone administration was also noticed.
Resumo:
Shear layers shed by aircraft wings roll up into vortices. A similar, though far less common, phenomenon can occur in the wake of a turbomachine blade. This paper presents experimental data from a new single stage turbine that has been commissioned at the Whittle Laboratory. Two low aspect ratio stators have been tested with the same rotor row. Surface flow visualisation illustrates the extremely strong secondary flows present in both NGV designs. These secondary flows lead to conventional passage vortices but also to an intense vortex sheet which is shed from the trailing edge of the blades. Pneumatic probe traverse show how this sheet rolls up into a concentrated vortex in the second stator design, but not in the first. A simple numerical experiment is used to model the shear layer instability and the effects of trailing edge shape and exit yaw angle distribution are investigated. It is found that the latter has a strong influence on shear layer rollup: inhibiting the formation of a vortex downstream of NGV 1 but encouraging it behind NGV 2.
Resumo:
The composition of the time-resolved surface pressure field around a high-pressure rotor blade caused by the presence of neighboring blade rows was studied, with the individual effects of wake, shock and potential field interaction being determined. Two test geometries were considered: first, a high-pressure turbine stage coupled with a swan-necked diffuser exit duct; secondly, the same high-pressure stage but with a vane located in the downstream duct. Both tests were carried out at engine-representative Mach and Reynolds numbers. By comparing the results to time-resolved computational predictions of the flowfield, the accuracy with which the computation predicts blade interaction was determined. It was found that in addition to upstream vane-rotor and rotor-downstream vane interactions, a new interaction mechanism was found resulting from the interaction between the downstream vane's potential field and the upstream vane's trailing edge potential field and shock.
Resumo:
The composition of the time-resolved surface pressure field around a high-pressure rotor blade caused by the presence of neighboring blade rows was studied, with the individual effects of wake, shock and potential field interaction being determined. Two test geometries were considered: first, a high-pressure turbine stage coupled with a swan-necked diffuser exit duct; secondly, the same high-pressure stage but with a vane located in the downstream duct. Both tests were carried out at engine-representative Mach and Reynolds numbers. By comparing the results to time-resolved computational predictions of the flowfield, the accuracy with which the computation predicts blade interaction was determined. Evidence was obtained that for a large downstream vane, the flow conditions in the rotor passage, at any instant in time, are close to being steady state.
Resumo:
This paper describes both the migration and dissipation of flow phenomena downstream of a transonic high-pressure turbine stage. The geometry of the HP stage exit duct considered is a swan-necked diffuser similar to those likely to be used in future engine designs. The paper contains results both from an experimental programme in a turbine test facility and from numerical predictions. Experimental data was acquired using three fast-response aerodynamic probes capable of measuring Mach number, whirl angle, pitch angle, total pressure and static pressure. The probes were used to make time-resolved area traverses at two axial locations downstream of the rotor trailing edge. A 3D time-unsteady viscous Navier-Stokes solver was used for the numerical predictions. The unsteady exit flow from a turbine stage is formed from rotordependent phenomena (such as the rotor wake, the rotor trailing edge recompression shock, the tip-leakage flow and the hub secondary flow) and vane-rotor interaction dependant phenomena. This paper describes the time-resolved behaviour and three-dimensional migration paths of both of these phenomena as they convect downstream. It is shown that the inlet flow to a downstream vane is dominated by two corotating vortices, the first caused by the rotor tip-leakage flow and the second by the rotor hub secondary flow. At the inlet plane of the downstream vane the wake is extremely weak and the radial pressure gradient is shown to have caused the majority of the high loss wake fluid to be located between the mid-height of the passage and the casing wall. The structure of the flow indicates that between a high pressure stage and a downstream vane simple two-dimensional blade row interaction does not occur. The results presented in this paper indicate that the presence of an upstream stage is likely to significantly alter the structure of the secondary flow within a downstream vane. The paper also shows that vane-rotor interaction within the upstream stage causes a 10° circumferential variation in the inlet flow angle of the 2nd stage vane.
Resumo:
A study of the three-dimensional stator-rotor interaction in a turbine stage is presented. Experimental data reveal vortices downstream of the rotor which are stationary in the absolute frame - indicating that they are caused by the stator exit flowfield. Evidence of the rotor hub passage vortices is seen, but additional vortical structures away from the endwalls, which would not be present if the rotor were tested in isolation, are also identified. An unsteady computation of the rotor row is performed using the measured stator exit flowfield as the inlet boundary condition. The strength and location of the vortices at rotor exit are predicted. A formation mechanism is proposed whereby stator wake fluid with steep spanwise gradients of absolute total pressure is responsible for all but one of the rotor exit vortices. This mechanism is then verified computationally using a passive-scalar tracking technique. The predicted loss generation through the rotor row is then presented and a comparison made with a steady calculation where the inlet flow has been mixed out to pitchwise uniformity. The loss produced in the steady simulation, even allowing for the mixing loss at inlet, is 10% less than that produced in the unsteady simulation. This difference highlights the importance of the time-accurate calculation as a tool of the turbomachine designer.