946 resultados para Grashof number
Resumo:
Mathematical predictions of flow conditions along a steep gradient rock bedded stream are examined. Stream gage discharge data and Manning's Equation are used to calculate alternative velocities, and subsequently Froude Numbers, assuming varying values of velocity coefficient, full depth or depth adjusted for vertical flow separation. Comparison of the results with photos show that Froude Numbers calculated from velocities derived from Manning's Equation, assuming a velocity coefficient of 1.30 and full depth, most accurately predict flow conditions, when supercritical flow is defined as Froude Number values above 0.84. Calculated Froude Number values between 0.8 and 1.1 correlate well with observed transitional flow, defined as the first appearance of small diagonal waves. Transitions from subcritical through transitional to clearly supercritical flow are predictable. Froude Number contour maps reveal a sinuous rise and fall of values reminiscent of pool riffle energy distribution.
Resumo:
Full Title: Letters from the Secretary of War to the Committee of Ways and Means, in relation to the number of Militia called into the public service in 1813, to a provision for paying the bounties and premiums to soldiers lately authorized, and to the strength of the army March, 3, 1814. Read, and ordered to be printed. U.S. 13th Congress 2nd Session, 1813-1814. House.
Resumo:
List of the number of loads dredged by Smiley’s Dredge since the 1st of October along the Welland Railway. This is addressed to S.D. Woodruff and signed by James Woodall of Lock No. 1. There are holes and stains in the document. Text is not affected, Jan. 12, 1859.
Resumo:
Note regarding the number of days Fred Holmes was employed upon the Port Robinson and Thorold macadamized road during the months of July and August. This is signed by S.D. Woodruff and Fred Holmes, November, 1857.
Resumo:
Gowers, dans son article sur les matrices quasi-aléatoires, étudie la question, posée par Babai et Sos, de l'existence d'une constante $c>0$ telle que tout groupe fini possède un sous-ensemble sans produit de taille supérieure ou égale a $c|G|$. En prouvant que, pour tout nombre premier $p$ assez grand, le groupe $PSL_2(\mathbb{F}_p)$ (d'ordre noté $n$) ne posséde aucun sous-ensemble sans produit de taille $c n^{8/9}$, il y répond par la négative. Nous allons considérer le probléme dans le cas des groupes compacts finis, et plus particuliérement des groupes profinis $SL_k(\mathbb{Z}_p)$ et $Sp_{2k}(\mathbb{Z}_p)$. La premiére partie de cette thése est dédiée à l'obtention de bornes inférieures et supérieures exponentielles pour la mesure suprémale des ensembles sans produit. La preuve nécessite d'établir préalablement une borne inférieure sur la dimension des représentations non-triviales des groupes finis $SL_k(\mathbb{Z}/(p^n\mathbb{Z}))$ et $Sp_{2k}(\mathbb{Z}/(p^n\mathbb{Z}))$. Notre théoréme prolonge le travail de Landazuri et Seitz, qui considérent le degré minimal des représentations pour les groupes de Chevalley sur les corps finis, tout en offrant une preuve plus simple que la leur. La seconde partie de la thése à trait à la théorie algébrique des nombres. Un polynome monogéne $f$ est un polynome unitaire irréductible à coefficients entiers qui endengre un corps de nombres monogéne. Pour un nombre premier $q$ donné, nous allons montrer, en utilisant le théoréme de densité de Tchebotariov, que la densité des nombres premiers $p$ tels que $t^q -p$ soit monogéne est supérieure ou égale à $(q-1)/q$. Nous allons également démontrer que, quand $q=3$, la densité des nombres premiers $p$ tels que $\mathbb{Q}(\sqrt[3]{p})$ soit non monogéne est supérieure ou égale à $1/9$.
Resumo:
A profile is a finite sequence of vertices of a graph. The set of all vertices of the graph which minimises the sum of the distances to the vertices of the profile is the median of the profile. Any subset of the vertex set such that it is the median of some profile is called a median set. The number of median sets of a graph is defined to be the median number of the graph. In this paper, we identify the median sets of various classes of graphs such as Kp − e, Kp,q forP > 2, and wheel graph and so forth. The median numbers of these graphs and hypercubes are found out, and an upper bound for the median number of even cycles is established.We also express the median number of a product graph in terms of the median number of their factors.
Resumo:
A periphery transversal of a median graph G is introduced as a set of vertices that meets all the peripheral subgraphs of G. Using this concept, median graphs with geodetic number 2 are characterized in two ways. They are precisely the median graphs that contain a periphery transversal of order 2 as well as the median graphs for which there exists a profile such that the remoteness function is constant on G. Moreover, an algorithm is presented that decides in O(mlog n) time whether a given graph G with n vertices and m edges is a median graph with geodetic number 2. Several additional structural properties of the remoteness function on hypercubes and median graphs are obtained and some problems listed
Resumo:
We study the asymptotics conjecture of Malle for dihedral groups Dl of order 2l, where l is an odd prime. We prove the expected lower bound for those groups. For the upper bounds we show that there is a connection to class groups of quadratic number fields. The asymptotic behavior of those class groups is predicted by the Cohen-Lenstra heuristics. Under the assumption of this heuristic we are able to prove the expected upper bounds.