958 resultados para Graph spectra


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A global dataset of in situ particulate absorption spectra has been decomposed into component functions representing absorption by phytoplankton pigments and non-algal particles. The magnitudes of component Gaussian functions, used to represent absorption by individual or groups of pigments, are well correlated with pigment concentrations determined using High Performance Liquid Chromatography. We are able to predict the presence of chlorophylls a,ba,b, and cc, as well as two different groups of summed carotenoid pigments with percent errors between 30% and 57%. Existing methods of analysis of particulate absorption spectra measured in situ provide for only chlorophyll aa; the method presented here, using high spectral resolution particulate absorption, shows the ability to obtain the concentrations of additional pigments, allowing for more detailed studies of phytoplankton ecology than currently possible with in-situ spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New R-matrix calculations of electron impact excitation rates in Ca XV are used to derive theoretical electron density diagnostic emission line intensity ratios involving 2s(2)2p(2)- 2s2p(3) transitions, specifically R-1 = I(208.70 Angstrom)/I(200.98 Angstrom), R-2 = I(181.91 Angstrom)/I(200.98 Angstrom), and R-3 = I(215.38 Angstrom)/I(200.98 Angstrom), for a range of electron temperatures (T-e = 10(6.4)-10(6.8) K) and densities (Ne = 10(9)-10(13) cm(-3)) appropriate to solar coronal plasmas. Electron densities deduced from the observed values of R-1, R-2, and R-3 for several solar flares, measured from spectra obtained with the Naval Research Laboratory's S082A spectrograph on board Skylab, are found to be consistent. In addition, the derived electron densities are in excellent agreement with those determined from line ratios in Ca XVI, which is formed at a similar electron temperature to Ca XV. These results provide some experimental verification for the accuracy of the line ratio calculations, and hence the atomic data on which they are based. A set of eight theoretical Ca XV line ratios involving 2s(2)2p(2)-2s2p(3) transitions in the wavelength range similar to140-216 Angstrom are also found to be in good agreement with those measured from spectra of the TEXT tokamak plasma, for which the electron temperature and density have been independently determined. This provides additional support for the accuracy of the theoretical line ratios and atomic data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel approach to goal recognition based on a two-stage paradigm of graph construction and analysis. First, a graph structure called a Goal Graph is constructed to represent the observed actions, the state of the world, and the achieved goals as well as various connections between these nodes at consecutive time steps. Then, the Goal Graph is analysed at each time step to recognise those partially or fully achieved goals that are consistent with the actions observed so far. The Goal Graph analysis also reveals valid plans for the recognised goals or part of these goals. Our approach to goal recognition does not need a plan library. It does not suffer from the problems in the acquisition and hand-coding of large plan libraries, neither does it have the problems in searching the plan space of exponential size. We describe two algorithms for Goal Graph construction and analysis in this paradigm. These algorithms are both provably sound, polynomial-time, and polynomial-space. The number of goals recognised by our algorithms is usually very small after a sequence of observed actions has been processed. Thus the sequence of observed actions is well explained by the recognised goals with little ambiguity. We have evaluated these algorithms in the UNIX domain, in which excellent performance has been achieved in terms of accuracy, efficiency, and scalability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent fully relativistic calculations of radiative rates and electron impact excitation cross-sections for FeXIII are used to generate emission-line ratios involving 3s23p2-3s3p3 and 3s23p2-3s23p3d transitions in the 170-225 and 235-450 Å wavelength ranges covered by the Solar Extreme-Ultraviolet Research Telescope and Spectrograph (SERTS). A comparison of these line ratios with SERTS active region observations from rocket flights in 1989 and 1995 reveals generally very good agreement between theory and experiment. Several new FeXIII emission features are identified, at wavelengths of 203.79, 259.94, 288.56 and 290.81 Å. However, major discrepancies between theory and observation remain for several FeXIII transitions, as previously found by Landi and others, which cannot be explained by blending. Errors in the adopted atomic data appear to be the most likely explanation, in particular for transitions which have 3s23p3d1D2 as their upper level. The most useful FeXIII electron-density diagnostics in the SERTS spectral regions are assessed, in terms of the line pairs involved being (i) apparently free of atomic physics problems and blends, (ii) close in wavelength to reduce the effects of possible errors in the instrumental intensity calibration, and (iii) very sensitive to changes in Ne over the range 108-1011cm-3. It is concluded that the ratios which best satisfy these conditions are 200.03/202.04 and 203.17/202.04 for the 170-225 Å wavelength region, and 348.18/320.80, 348.18/368.16, 359.64/348.18 and 359.83/368.16 for 235-450 Å.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The absorption-line spectra of early B-type supergiants show significant broadening that implies that an additional broadening mechanism (characterized here as `macroturbulence') is present in addition to rotational broadening. Using high-resolution spectra with signal-to-noise ratios of typically 500, we have attempted to quantify the relative contributions of rotation and macroturbulence, but even with data of this quality significant problems were encountered. However, for all our targets, a model where macroturbulence dominates and rotation is negligible is acceptable; the reverse scenario leads to poor agreement between theory and observation. Additionally, there is marginal evidence for the degree of broadening increasing with line strength, possibly a result of the stronger lines being formed higher in the atmosphere. Acceptable values of the projected rotational velocity are normally less than or equal to 50 km s-1, which may also be a typical upper limit for the rotational velocity. Our best estimates for the projected rotational velocity are typically 10-20 km s-1 and hence compatible with this limit. These values are compared with those predicted by single star evolutionary models, which are initially rapidly rotating. It is concluded that either these models underestimate the rate of rotational breaking or some of the targets may be evolving through a blue loop or are binaries.