960 resultados para Graph partitioning
Resumo:
The Lattes platform is the major scientific information system maintained by the National Council for Scientific and Technological Development (CNPq). This platform allows to manage the curricular information of researchers and institutions working in Brazil based on the so called Lattes Curriculum. However, the public information is individually available for each researcher, not providing the automatic creation of reports of several scientific productions for research groups. It is thus difficult to extract and to summarize useful knowledge for medium to large size groups of researchers. This paper describes the design, implementation and experiences with scriptLattes: an open-source system to create academic reports of groups based on curricula of the Lattes Database. The scriptLattes system is composed by the following modules: (a) data selection, (b) data preprocessing, (c) redundancy treatment, (d) collaboration graph generation among group members, (e) research map generation based on geographical information, and (f) automatic report creation of bibliographical, technical and artistic production, and academic supervisions. The system has been extensively tested for a large variety of research groups of Brazilian institutions, and the generated reports have shown an alternative to easily extract knowledge from data in the context of Lattes platform. The source code, usage instructions and examples are available at http://scriptlattes.sourceforge.net/.
Resumo:
OBJETIVO: Analisar a acurácia do diagnóstico de dois protocolos de imunofluorescência indireta para leishmaniose visceral canina. MÉTODOS: Cães provenientes de inquérito soroepidemiológico realizado em área endêmica nos municípios de Araçatuba e de Andradina, na região noroeste do estado de São Paulo, em 2003, e área não endêmica da região metropolitana de São Paulo, foram utilizados para avaliar comparativamente dois protocolos da reação de imunofluorescência indireta (RIFI) para leishmaniose: um utilizando antígeno heterólogo Leishmania major (RIFI-BM) e outro utilizando antígeno homólogo Leishmania chagasi (RIFI-CH). Para estimar acurácia utilizou-se a análise two-graph receiver operating characteristic (TG-ROC). A análise TG-ROC comparou as leituras da diluição 1:20 do antígeno homólogo (RIFI-CH), consideradas como teste referência, com as diluições da RIFI-BM (antígeno heterólogo). RESULTADOS: A diluição 1:20 do teste RIFI-CH apresentou o melhor coeficiente de contingência (0,755) e a maior força de associação entre as duas variáveis estudadas (qui-quadrado=124,3), sendo considerada a diluição-referência do teste nas comparações com as diferentes diluições do teste RIFI-BM. Os melhores resultados do RIFI-BM foram obtidos na diluição 1:40, com melhor coeficiente de contingência (0,680) e maior força de associação (qui-quadrado=80,8). Com a mudança do ponto de corte sugerido nesta análise para a diluição 1:40 da RIFI-BM, o valor do parâmetro especificidade aumentou de 57,5% para 97,7%, embora a diluição 1:80 tivesse apresentado a melhor estimativa para sensibilidade (80,2%) com o novo ponto de corte. CONCLUSÕES: A análise TG-ROC pode fornecer importantes informações sobre os testes de diagnósticos, além de apresentar sugestões sobre pontos de cortes que podem melhorar as estimativas de sensibilidade e especificidade do teste, e avaliá-los a luz do melhor custo-benefício.
Resumo:
Background: Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS), first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS. Methodology and Principal Findings: In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Whechsler Adult Intelligence Scale) and WISC (Wechsler Intelligence Scale for Children), and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence. Conclusion: The present results support these claims and the neural efficiency hypothesis.
Resumo:
Rumen fermentation and methane emission for eucalyptus (Eucalyptus citriodora) fresh leaves (FL) or residue leaves (RL), after essential oil extraction from eucalyptus leaves in comparison with alfalfa (Medicago sativa) hay, were investigated in vitro. Eucalyptus FL and RL were obtained from the Distillery Trees Barras Company, Torrinha City, Sao Paulo, Brazil. The semi-automatic system of gas production was used to measure gas production, methane emission and rumen fermentation after 24 h incubation in vitro. The results showed that the crude protein (CP) contents were 76.4, 78.1 and 181.9 g kg(-1) DM for eucalyptus FL, RL and alfalfa hay, respectively. The neutral-detergent fibre (NDF) and acid-detergent fibre (ADF) were significantly lower in eucalyptus FL and RL than alfalfa hay. The Eucalyptus fresh and residue leaves were rich in total phenols (TP) and total tannins (TT) but had negligible content of condensed tannins (CT). There was significant reduction in cumulative gas production about 54 and 51% with eucalyptus FL and RL, respectively, compared with alfalfa hay. The methane emission (mL/g DM) was reduced (P<0.05) by 53 and 57% with eucalyptus FL and RL, respectively, but the reduction was 21 and 16% when expressed on truly digested organic matter basis. There were a decline (P<0.05) in true dry and organic matter degradation in vitro in eucalyptus FL and RL compared with alfalfa hay substrate. The partitioning factor values were higher (P<0.05) in eucalyptus FL and RL than alfalfa hay. There was no significant difference observed between eucalyptus FL, RL and alfalfa hay in protozoa count. It is concluded that the eucalyptus leaves have potential effect to mitigate CH4 production in vitro, which may be attributed to a decrease in fermentable substrate rather than to a direct effect on methanogenesis.
Resumo:
Mycoplasma suis, the causative agent of porcine infectious anemia, has never been cultured in vitro and mechanisms by which it causes disease are poorly understood. Thus, the objective herein was to use whole genome sequencing and analysis of M. suis to define pathogenicity mechanisms and biochemical pathways. M. suis was harvested from the blood of an experimentally infected pig. Following DNA extraction and construction of a paired end library, whole-genome sequencing was performed using GS-FLX (454) and Titanium chemistry. Reads on paired-end constructs were assembled using GS De Novo Assembler and gaps closed by primer walking; assembly was validated by PFGE. Glimmer and Manatee Annotation Engine were used to predict and annotate protein-coding sequences (CDS). The M. suis genome consists of a single, 742,431 bp chromosome with low G+C content of 31.1%. A total of 844 CDS, 3 single copies, unlinked rRNA genes and 32 tRNAs were identified. Gene homologies and GC skew graph show that M. suis has a typical Mollicutes oriC. The predicted metabolic pathway is concise, showing evidence of adaptation to blood environment. M. suis is a glycolytic species, obtaining energy through sugars fermentation and ATP-synthase. The pentose-phosphate pathway, metabolism of cofactors and vitamins, pyruvate dehydrogenase and NAD(+) kinase are missing. Thus, ribose, NADH, NADPH and coenzyme A are possibly essential for its growth. M. suis can generate purines from hypoxanthine, which is secreted by RBCs, and cytidine nucleotides from uracil. Toxins orthologs were not identified. We suggest that M. suis may cause disease by scavenging and competing for host nutrients, leading to decreased life-span of RBCs. In summary, genome analysis shows that M. suis is dependent on host cell metabolism and this characteristic is likely to be linked to its pathogenicity. The prediction of essential nutrients will aid the development of in vitro cultivation systems.
Resumo:
Measurements of polar organic marker compounds were performed on aerosols that were collected at a pasture site in the Amazon basin (Rondonia, Brazil) using a high-volume dichotomous sampler (HVDS) and a Micro-Orifice Uniform Deposit Impactor (MOUDI) within the framework of the 2002 LBA-SMOCC (Large-Scale Biosphere Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall, and Climate: Aerosols From Biomass Burning Perturb Global and Regional Climate) campaign. The campaign spanned the late dry season (biomass burning), a transition period, and the onset of the wet season (clean conditions). In the present study a more detailed discussion is presented compared to previous reports on the behavior of selected polar marker compounds, including levoglucosan, malic acid, isoprene secondary organic aerosol (SOA) tracers and tracers for fungal spores. The tracer data are discussed taking into account new insights that recently became available into their stability and/or aerosol formation processes. During all three periods, levoglucosan was the most dominant identified organic species in the PM(2.5) size fraction of the HVDS samples. In the dry period levoglucosan reached concentrations of up to 7.5 mu g m(-3) and exhibited diel variations with a nighttime prevalence. It was closely associated with the PM mass in the size-segregated samples and was mainly present in the fine mode, except during the wet period where it peaked in the coarse mode. Isoprene SOA tracers showed an average concentration of 250 ng m(-3) during the dry period versus 157 ng m(-3) during the transition period and 52 ng m(-3) during the wet period. Malic acid and the 2-methyltetrols exhibited a different size distribution pattern, which is consistent with different aerosol formation processes (i.e., gas-to-particle partitioning in the case of malic acid and heterogeneous formation from gas-phase precursors in the case of the 2-methyltetrols). The 2-methyltetrols were mainly associated with the fine mode during all periods, while malic acid was prevalent in the fine mode only during the dry and transition periods, and dominant in the coarse mode during the wet period. The sum of the fungal spore tracers arabitol, mannitol, and erythritol in the PM(2.5) fraction of the HVDS samples during the dry, transition, and wet periods was, on average, 54 ng m(-3), 34 ng m(-3), and 27 ng m(-3), respectively, and revealed minor day/night variation. The mass size distributions of arabitol and mannitol during all periods showed similar patterns and an association with the coarse mode, consistent with their primary origin. The results show that even under the heavy smoke conditions of the dry period a natural background with contributions from bioaerosols and isoprene SOA can be revealed. The enhancement in isoprene SOA in the dry season is mainly attributed to an increased acidity of the aerosols, increased NO(x) concentrations and a decreased wet deposition.
Resumo:
We investigate a conjecture on the cover times of planar graphs by means of large Monte Carlo simulations. The conjecture states that the cover time tau (G(N)) of a planar graph G(N) of N vertices and maximal degree d is lower bounded by tau (G(N)) >= C(d)N(lnN)(2) with C(d) = (d/4 pi) tan(pi/d), with equality holding for some geometries. We tested this conjecture on the regular honeycomb (d = 3), regular square (d = 4), regular elongated triangular (d = 5), and regular triangular (d = 6) lattices, as well as on the nonregular Union Jack lattice (d(min) = 4, d(max) = 8). Indeed, the Monte Carlo data suggest that the rigorous lower bound may hold as an equality for most of these lattices, with an interesting issue in the case of the Union Jack lattice. The data for the honeycomb lattice, however, violate the bound with the conjectured constant. The empirical probability distribution function of the cover time for the square lattice is also briefly presented, since very little is known about cover time probability distribution functions in general.
Resumo:
Biological neuronal networks constitute a special class of dynamical systems, as they are formed by individual geometrical components, namely the neurons. In the existing literature, relatively little attention has been given to the influence of neuron shape on the overall connectivity and dynamics of the emerging networks. The current work addresses this issue by considering simplified neuronal shapes consisting of circular regions (soma/axons) with spokes (dendrites). Networks are grown by placing these patterns randomly in the two-dimensional (2D) plane and establishing connections whenever a piece of dendrite falls inside an axon. Several topological and dynamical properties of the resulting graph are measured, including the degree distribution, clustering coefficients, symmetry of connections, size of the largest connected component, as well as three hierarchical measurements of the local topology. By varying the number of processes of the individual basic patterns, we can quantify relationships between the individual neuronal shape and the topological and dynamical features of the networks. Integrate-and-fire dynamics on these networks is also investigated with respect to transient activation from a source node, indicating that long-range connections play an important role in the propagation of avalanches.
Resumo:
With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma(tau)=3/2). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma(tau)=1.780 +/- 0.005.
Resumo:
In the crystal of the title compound, C(17)H(16)N(2), molecules are linked by C-H center dot center dot center dot N hydrogen bonds, forming rings of graph-set motifs R(2)(1) (6) and R(2)(2) (10). The title molecule is close to planar, with a dihedral angle between the aromatic rings of 0.6 (1)degrees. Torsion angles confirm a conformational trans structure.
Resumo:
In the title compound, C10H6ClNO2, the dihedral angle between the benzene and maleimide rings is 47.54 (9)degrees. Molecules form centrosymmetric dimers through C-H center dot center dot center dot O hydrogen bonds, resulting in rings of graph- set motif R2 2(8) and chains in the [100] direction. Molecules are also linked by C-H center dot center dot center dot Cl hydrogen bonds along [001]. In this same direction, molecules are connected to other neighbouring molecules by C-H center dot center dot center dot O hydrogen bonds, forming edge- fused R-4(4)(24) rings.
Resumo:
A planar k-restricted structure is a simple graph whose blocks are planar and each has at most k vertices. Planar k-restricted structures are used by approximation algorithms for Maximum Weight Planar Subgraph, which motivates this work. The planar k-restricted ratio is the infimum, over simple planar graphs H, of the ratio of the number of edges in a maximum k-restricted structure subgraph of H to the number edges of H. We prove that, as k tends to infinity, the planar k-restricted ratio tends to 1/2. The same result holds for the weighted version. Our results are based on analyzing the analogous ratios for outerplanar and weighted outerplanar graphs. Here both ratios tend to 1 as k goes to infinity, and we provide good estimates of the rates of convergence, showing that they differ in the weighted from the unweighted case.
Resumo:
An (n, d)-expander is a graph G = (V, E) such that for every X subset of V with vertical bar X vertical bar <= 2n - 2 we have vertical bar Gamma(G)(X) vertical bar >= (d + 1) vertical bar X vertical bar. A tree T is small if it has at most n vertices and has maximum degree at most d. Friedman and Pippenger (1987) proved that any ( n; d)- expander contains every small tree. However, their elegant proof does not seem to yield an efficient algorithm for obtaining the tree. In this paper, we give an alternative result that does admit a polynomial time algorithm for finding the immersion of any small tree in subgraphs G of (N, D, lambda)-graphs Lambda, as long as G contains a positive fraction of the edges of Lambda and lambda/D is small enough. In several applications of the Friedman-Pippenger theorem, including the ones in the original paper of those authors, the (n, d)-expander G is a subgraph of an (N, D, lambda)-graph as above. Therefore, our result suffices to provide efficient algorithms for such previously non-constructive applications. As an example, we discuss a recent result of Alon, Krivelevich, and Sudakov (2007) concerning embedding nearly spanning bounded degree trees, the proof of which makes use of the Friedman-Pippenger theorem. We shall also show a construction inspired on Wigderson-Zuckerman expander graphs for which any sufficiently dense subgraph contains all trees of sizes and maximum degrees achieving essentially optimal parameters. Our algorithmic approach is based on a reduction of the tree embedding problem to a certain on-line matching problem for bipartite graphs, solved by Aggarwal et al. (1996).
Resumo:
Efficient automatic protein classification is of central importance in genomic annotation. As an independent way to check the reliability of the classification, we propose a statistical approach to test if two sets of protein domain sequences coming from two families of the Pfam database are significantly different. We model protein sequences as realizations of Variable Length Markov Chains (VLMC) and we use the context trees as a signature of each protein family. Our approach is based on a Kolmogorov-Smirnov-type goodness-of-fit test proposed by Balding et at. [Limit theorems for sequences of random trees (2008), DOI: 10.1007/s11749-008-0092-z]. The test statistic is a supremum over the space of trees of a function of the two samples; its computation grows, in principle, exponentially fast with the maximal number of nodes of the potential trees. We show how to transform this problem into a max-flow over a related graph which can be solved using a Ford-Fulkerson algorithm in polynomial time on that number. We apply the test to 10 randomly chosen protein domain families from the seed of Pfam-A database (high quality, manually curated families). The test shows that the distributions of context trees coming from different families are significantly different. We emphasize that this is a novel mathematical approach to validate the automatic clustering of sequences in any context. We also study the performance of the test via simulations on Galton-Watson related processes.
Resumo:
Consider a discrete locally finite subset Gamma of R(d) and the cornplete graph (Gamma, E), with vertices Gamma and edges E. We consider Gibbs measures on the set of sub-graphs with vertices Gamma and edges E` subset of E. The Gibbs interaction acts between open edges having a vertex in common. We study percolation properties of the Gibbs distribution of the graph ensemble. The main results concern percolation properties of the open edges in two cases: (a) when Gamma is sampled from a homogeneous Poisson process; and (b) for a fixed Gamma with sufficiently sparse points. (c) 2010 American Institute of Physics. [doi:10.1063/1.3514605]