852 resultados para Graph mining
Resumo:
Includes bibliography
Resumo:
Incluye Bibliografía
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study aimed to evaluate the sediment quality in the estuarine protected area known as Canan,ia-Iguape-Peruibe (CIP-PA), located on the southeastern coast of Brazil. The study was designed considering possible negative effects induced by the city of Canan,ia on the sediment quality of surrounding areas. This evaluation was performed using chemical and ecotoxicological analyses. Sediments were predominantly sandy, with low CaCO3 contents. Amounts of organic matter varied, but higher contents occurred closer to the city, as well as did Fe and Total Recoverable Oils and Greases (TROGs) concentrations. Contamination by Cd and Cu was revealed in some samples, while concentrations of Zn were considered low. Chronic toxicity was detected in all tested sediments and acute toxicity occurred only in sediments collected near the city. The principal component analysis (PCA) revealed an association among Cd, Cu, Fe, TROG, fines, organic matter, CaCO3, and chronic toxicity, whereas acute toxicity was found to be associated with Zn and mud. However, because Zn levels were low, acute toxicity was likely due to a contaminant that was not measured. Results show that there is a broad area within the CIP-PA that is under the influence of mining activities (chronic toxicity, moderate contamination by metals), whereas poorer conditions occur closer to Canan,ia (acute toxicity); thus, the urban area seems to constitute a relevant source of contaminants for the estuarine complex. These results show that contamination is already capable of producing risks for the local aquatic biota, which suggests that the CIP-PA effectiveness in protecting estuarine biota may be threatened.
Resumo:
Concept drift, which refers to non stationary learning problems over time, has increasing importance in machine learning and data mining. Many concept drift applications require fast response, which means an algorithm must always be (re)trained with the latest available data. But the process of data labeling is usually expensive and/or time consuming when compared to acquisition of unlabeled data, thus usually only a small fraction of the incoming data may be effectively labeled. Semi-supervised learning methods may help in this scenario, as they use both labeled and unlabeled data in the training process. However, most of them are based on assumptions that the data is static. Therefore, semi-supervised learning with concept drifts is still an open challenging task in machine learning. Recently, a particle competition and cooperation approach has been developed to realize graph-based semi-supervised learning from static data. We have extend that approach to handle data streams and concept drift. The result is a passive algorithm which uses a single classifier approach, naturally adapted to concept changes without any explicit drift detection mechanism. It has built-in mechanisms that provide a natural way of learning from new data, gradually "forgetting" older knowledge as older data items are no longer useful for the classification of newer data items. The proposed algorithm is applied to the KDD Cup 1999 Data of network intrusion, showing its effectiveness.
Resumo:
Background: Once multi-relational approach has emerged as an alternative for analyzing structured data such as relational databases, since they allow applying data mining in multiple tables directly, thus avoiding expensive joining operations and semantic losses, this work proposes an algorithm with multi-relational approach. Methods: Aiming to compare traditional approach performance and multi-relational for mining association rules, this paper discusses an empirical study between PatriciaMine - an traditional algorithm - and its corresponding multi-relational proposed, MR-Radix. Results: This work showed advantages of the multi-relational approach in performance over several tables, which avoids the high cost for joining operations from multiple tables and semantic losses. The performance provided by the algorithm MR-Radix shows faster than PatriciaMine, despite handling complex multi-relational patterns. The utilized memory indicates a more conservative growth curve for MR-Radix than PatriciaMine, which shows the increase in demand of frequent items in MR-Radix does not result in a significant growth of utilized memory like in PatriciaMine. Conclusion: The comparative study between PatriciaMine and MR-Radix confirmed efficacy of the multi-relational approach in data mining process both in terms of execution time and in relation to memory usage. Besides that, the multi-relational proposed algorithm, unlike other algorithms of this approach, is efficient for use in large relational databases.
Spatial Data Mining to Support Environmental Management and Decision Making - A Case Study in Brazil
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The increase in new electronic devices had generated a considerable increase in obtaining spatial data information; hence these data are becoming more and more widely used. As well as for conventional data, spatial data need to be analyzed so interesting information can be retrieved from them. Therefore, data clustering techniques can be used to extract clusters of a set of spatial data. However, current approaches do not consider the implicit semantics that exist between a region and an object’s attributes. This paper presents an approach that enhances spatial data mining process, so they can use the semantic that exists within a region. A framework was developed, OntoSDM, which enables spatial data mining algorithms to communicate with ontologies in order to enhance the algorithm’s result. The experiments demonstrated a semantically improved result, generating more interesting clusters, therefore reducing manual analysis work of an expert.
Resumo:
We investigate the problem of waveband switching (WBS) in a wavelength-division multiplexing (WDM) mesh network with dynamic traffic requests. To solve the WBS problem in a homogeneous dynamic WBS network, where every node is a multi-granular optical cross-connect (MG-OXC), we construct an auxiliary graph. Based on the auxiliary graph, we develop two heuristic on-line WBS algorithms with different grouping policies, namely the wavelength-first WBS algorithm based on the auxiliary graph (WFAUG) and the waveband-first WBS algorithm based on the auxiliary graph (BFAUG). Our results show that the WFAUG algorithm outperforms the BFAUG algorithm.
Resumo:
One problem with using component-based software development approach is that once software modules are reused over generations of products, they form legacy structures that can be challenging to understand, making validating these systems difficult. Therefore, tools and methodologies that enable engineers to see interactions of these software modules will enhance their ability to make these software systems more dependable. To address this need, we propose SimSight, a framework to capture dynamic call graphs in Simics, a widely adopted commercial full-system simulator. Simics is a software system that simulates complete computer systems. Thus, it performs nearly identical tasks to a real system but at a much lower speed while providing greater execution observability. We have implemented SimSight to generate dynamic call graphs of statically and dynamically linked functions in x86/Linux environment. A case study illustrates how we can use SimSight to identify sources of software errors. We then evaluate its performance using 12 integer programs from SPEC CPU2006 benchmark suite.
Resumo:
This paper addresses the functional reliability and the complexity of reconfigurable antennas using graph models. The correlation between complexity and reliability for any given reconfigurable antenna is defined. Two methods are proposed to reduce failures and improve the reliability of reconfigurable antennas. The failures are caused by the reconfiguration technique or by the surrounding environment. These failure reduction methods proposed are tested and examples are given which verify these methods.
Resumo:
Serra da Canastra National Park (SCNP) is one of the most important protected areas in the Cerrado biome. Despite its importance to the conservation of rare and endangered species like Brazilian Merganser, two bills were approved in 2010 by Brazil's Chamber of Deputies aiming to reduce SCNP's official boundaries and to transform some of its parts into an Environmental Protection Area (EPA). We evaluated whether such changes would facilitate mining areas to be legally exploited within the park's area, and if those mining areas would represent a threat to Brazilian Merganser populations at SCNP. Results showed that 55% of the mining areas currently within the National Park will be located within the new EPA, and six hydrographic micro-basins inhabited by Brazilian Merganser could be affected by environmental impacts caused by mineral exploitation in those areas. For these reasons, we recommend the two bills be refused at the Federal Senate.
Resumo:
The Sznajd model is a sociophysics model that is used to model opinion propagation and consensus formation in societies. Its main feature is that its rules favor bigger groups of agreeing people. In a previous work, we generalized the bounded confidence rule in order to model biases and prejudices in discrete opinion models. In that work, we applied this modification to the Sznajd model and presented some preliminary results. The present work extends what we did in that paper. We present results linking many of the properties of the mean-field fixed points, with only a few qualitative aspects of the confidence rule (the biases and prejudices modeled), finding an interesting connection with graph theory problems. More precisely, we link the existence of fixed points with the notion of strongly connected graphs and the stability of fixed points with the problem of finding the maximal independent sets of a graph. We state these results and present comparisons between the mean field and simulations in Barabasi-Albert networks, followed by the main mathematical ideas and appendices with the rigorous proofs of our claims and some graph theory concepts, together with examples. We also show that there is no qualitative difference in the mean-field results if we require that a group of size q > 2, instead of a pair, of agreeing agents be formed before they attempt to convince other sites (for the mean field, this would coincide with the q-voter model).