932 resultados para Goat cheese
Resumo:
Background: Interest in the development of dairy products naturally enriched in conjugated linoleic acid (CLA) exists. However, feeding regimens that enhance the CLA content of milk also increase concentrations of trans-18:1 fatty acids. The implications for human health are not yet known. Objective: This study investigated the effects of consuming dairy products naturally enriched in cis-9,trans-11 CLA (and trans-11 18:1) on the blood lipid profile, the atherogenicity of LDL, and markers of inflammation and insulin resistance in healthy middle-aged men. Design: Healthy middle-aged men (n = 32) consumed ultra-heat-treated milk, butter, and cheese that provided 0.151 g/d (control) or 1.421 g/d (modified) cis-9,trans-11 CLA for 6 wk. This was followed by a 7-wk washout and a crossover to the other treatment. Results: Consumption of dairy products enriched with cis-9,trans-11 CLA and trans-11 18:1 did not significantly affect body weight, inflammatory markers, insulin, glucose, triacylglycerols, or total, LDL, and HDL cholesterol but resulted in a small increase in the ratio of LDL to HDL cholesterol. The modified dairy products changed LDL fatty acid composition but had no significant effect on LDL particle size or the susceptibility of LDL to oxidation. Overall, increased consumption of full-fat dairy products and naturally derived trans fatty acids did not cause significant changes in cardiovascular disease risk variables, as may be expected on the basis of current health recommendations. Conclusion: Dairy products naturally enriched with cis-9,trans-11 CLA and trans-11 18: 1 do not appear to have a significant effect on the blood lipid profile.
Resumo:
Controlled human intervention trials are required to confirm the hypothesis that dietary fat quality may influence insulin action. The aim was to develop a food-exchange model, suitable for use in free-living volunteers, to investigate the effects of four experimental diets distinct in fat quantity and quality: high SFA (HSFA); high MUFA (HMUFA) and two low-fat (LF) diets, one supplemented with 1.24g EPA and DHA/d (LFn-3). A theoretical food-exchange model was developed. The average quantity of exchangeable fat was calculated as the sum of fat provided by added fats (spreads and oils), milk, cheese, biscuits, cakes, buns and pastries using data from the National Diet and Nutrition Survey of UK adults. Most of the exchangeable fat was replaced by specifically designed study foods. Also critical to the model was the use of carbohydrate exchanges to ensure the diets were isoenergetic. Volunteers from eight centres across Europe completed the dietary intervention. Results indicated that compositional targets were largely achieved with significant differences in fat quantity between the high-fat diets (39.9 (SEM 0.6) and 38.9 (SEM 0.51) percentage energy (%E) from fat for the HSFA and HMUFA diets respectively) and the low-fat diets (29.6 (SEM 0.6) and 29.1 (SEM 0.5) %E from fat for the LF and LFn-3 diets respectively) and fat quality (17.5 (SEM 0.3) and 10.4 (SEM 0.2) %E front SFA and 12.7 (SEM 0.3) and 18.7 (SEM 0.4) %E MUFA for the HSFA and HMUFA diets respectively). In conclusion, a robust, flexible food-exchange model was developed and implemented successfully in the LIPGENE dietary intervention trial.
Resumo:
This paper reviews the use of plant extracts as vegetable coagulants for cheesemaking. It covers the plants used as sources of coagulants, with a historical overview and particular emphasis on Cynara species. The genus Cynara L., its composition, milk clotting and proteolytic enzymes (cardosins) and their specificity towards peptide linkages are also described. Cheeses produced in the Iberian Peninsula using Cynara L. as coagulant are documented. Cynara L. is still the most used vegetable coagulant in cheesemaking, and also the most investigated. However, much work remains to be done to understand its action during cheese maturation and further characterization.
Resumo:
Changes occurring in the viability of Salmonella enterica subsp. enterica during the preparation and cold storage of Domiati cheese, Kariesh cheese and ice-cream were examined. A significant decrease in numbers was observed after whey drainage during the manufacture of Domiati cheese, but Salmonella remained viable for 13 weeks in cheeses prepared from milks with between 60 and 100 g/L NaCl; the viability declined in Domiati cheese made from highly salted milk during the later stages of storage. The method of coagulation used in the preparation of Kariesh cheese affected the survival time of the pathogen, and it varied from 2 to 3 weeks in cheeses made with a slow-acid coagulation method to 4-5 weeks for an acid-rennet coagulation method. This difference was attributed to the higher salt-in-moisture levels and lower pH values of Kariesh cheese prepared by the slow-acid coagulation method. A slight decrease in the numbers of Salmonella resulted from ageing ice-cream mix for 24 h at 0degreesC, but a greater reduction was evident after one day of frozen storage at -20degreesC. The pathogen survived further frozen storage for four months without any substantial change in numbers.
Resumo:
Calcium removal, using Duolite C433 ion exchange resin, was faster from permeate than from milk. Almost all calcium could be removed, suggesting a fairly rapid conversion from both soluble calcium phosphate and from micellar calcium to ionic calcium. Calcium reduction from milk is accompanied by an increase in pH, a reduction in ionic calcium, an increase in ethanol stability and an increase in the rennet coagulation time. There is a gradual increase in the average casein micelle size with calcium removal, up to a point where the micelle size increases dramatically. Zeta potential becomes more negative with calcium removal. At higher levels of calcium removal, the changes are not reversible, on reducing pH to its original value. For goat's milk, over the range 0-20% total calcium removal, relatively small reductions in total calcium gave rise to proportionally larger reductions in ionic calcium in a ratio of about 1:3.2.
Resumo:
Recent studies have illustrated the effects of cis-9, trans-11 conjugated linoleic acid (CLA) on human health. Ruminant-derived meat, milk and dairy products are the predominant sources of cis-9, trans-11 CLA in the human diet. This study evaluated the processing properties, texture, storage characteristics, and organoleptic properties of UHT milk, Caerphilly cheese, and butter produced from a milk enriched to a level of cis-9, trans-11 CLA that has been shown to have biological effects in humans. Forty-nine early-lactation Holstein-British Friesian cows were fed total mixed rations containing 0 (control) or 45 g/kg ( on dry matter basis) of a mixture (1:2 wt/wt) of fish oil and sunflower oil during two consecutive 7-d periods to produce a control and CLA-enhanced milk, respectively. Milk produced from cows fed the control and fish and sunflower oil diets contained 0.54 and 4.68 g of total CLA/100 g of fatty acids, respectively. Enrichment of CLA in raw milk from the fish and sunflower oil diet was also accompanied by substantial increases in trans C18:1 levels, lowered C18: 0, cis-C18:1, and total saturated fatty acid concentrations, and small increases in n-3 polyunsaturated fatty acid content. The CLA-enriched milk was used for the manufacture of UHT milk, butter, and cheese. Both the CLA-enhanced butter and cheese were less firm than control products. Although the sensory profiles of the CLA-enriched milk, butter, and cheese differed from those of the control products with respect to some attributes, the overall impression and flavor did not differ. In conclusion, it is feasible to produce CLA-enriched dairy products with acceptable storage and sensory characteristics.
Resumo:
The use of natural plant anthelmintics was suggested as a possible alternative control of gastrointestinal nematodes (GIN) in ruminants. Direct anthelmintic effects of tannin-containing plants have already been shown in sheep and goat GIN. These anthelmintic properties are mainly associated with condensed tannins. In the present study, we evaluated possible in vitro effects of three tannin-containing plants against bovine GIN. Effects of Onobrychis viciifolia, Lotus pedunculatus and Lotus corniculatus condensed tannin (CT) extracts on Cooperia oncophora and Ostertagia ostertagi were determined by a larval feeding inhibition assay (LFIA) and a larval exsheathment assay (LEA). In the LFIA, all three plant extracts significantly inhibited larval feeding behaviour of both C. oncophora and O. ostertagi first stage larvae in a dose-dependent manner. The L. pedunculatus extract, based on EC50 (effective concentration for 50% inhibition), was the most effective against both nematodes, followed by O. viciifolia and L. corniculatus. The effect of CT extracts upon larval feeding behaviour correlates with CT content and procyanidin/prodelphidin ratio. Larval exsheathment of C. oncophora and O. ostertagi L3 larvae (third stage larvae) was also affected by CT extracts from all three plants. In both in vitro assays, extracts with added polyvinylpolypyrrolidone, an inhibitor of tannins, generated almost the same values as the negative control; this confirms the role of CT in the anthelmintic effect of these plant extracts. Our results, therefore, indicated that tannin-containing plants could act against cattle nematodes.
Resumo:
Quadratic programming techniques were applied to household food consumption data in England and Wales to estimate likely changes in diet under healthy eating guidelines, and the consequences this would have on agriculture and land use in England and Wales. The first step entailed imposing nutrient restrictions on food consumption following dietary recommendations suggested by the UK Department of Health. The resulting diet was used, in a second step as a proxy for demand in agricultural commodities, to test the impact of such a scenario on food production and land use in England and Wales and the impacts of this on agricultural landscapes. Results of the diet optimisation indicated a large drop in consumption of foods rich in saturated fats and sugar, essentially cheese and sugar-based products, along with lesser cuts of fat and meat products. Conversely, consumption of fruit and vegetables, cereals, and flour would increase to meet dietary fibre recommendations. Such a shift in demand would dramatically affect production patterns: the financial net margin of England and Wales agriculture would rise, due to increased production of high market value and high economic margin crops. Some regions would, however, be negatively affected, mostly those dependent on beef cattle and sheep production that could not benefit from an increased demand for cereals and horticultural crops. The effects of these changes would also be felt in upstream industries, such as animal feed suppliers. While arable dominated landscapes would be little affected, pastoral landscapes would suffer through loss of grazing management and, possibly, land abandonment, especially in upland areas.
Resumo:
The aims of this study were to (i) compare the inhibitory effects of the natural microflora of different foods on the growth of Listeria monocytogenes during enrichment in selective and non-selective broths; (ii) to isolate and identify components of the microflora of the most inhibitory food; and (iii) to determine which of these components was most inhibitory to growth of L. monocytogenes in co-culture studies. Growth of an antibioticresistant marker strain of L. monocytogenes was examined during enrichment of a range of different foods in Tryptone Soya Broth (TSB), Half Fraser Broth (HFB) and Oxoid Novel Enrichment (ONE) Broth. Inhibition of L. monocytogenes was greatest in the presence of minced beef, salami and soft cheese and least with prepared fresh salad and chicken pâté. For any particular food the numbers of L. monocytogenes present after 24 h enrichment in different broths increased in the order: TSB, HFB and ONE Broth. Numbers of L. monocytogenes recovered after enrichment in TSB were inversely related to the initial aerobic plate count (APC) in the food but with only a moderate coefficient of determination (R2) of 0.51 implying that microbial numbers and the composition of the microflora both influenced the degree of inhibition of L. monocytogenes. In HFB and ONE Broth the relationship between APC and final L. monocytogenes counts was weaker. The microflora of TSB after 24 h enrichment of minced beef consisted of lactic acid bacteria, Brochothrix thermosphacta, Pseudomonas spp., Enterobacteriaceae, and enterococci. In co-culture studies of L. monocytogenes with different components of the microflora in TSB, the lactic acid bacteria were the most inhibitory followed by the Enterobacteriaceae. The least inhibitory organisms were Pseudomonas sp., enterococci and B. thermosphacta. In HFB and ONE Broth the growth of Gram-negative organisms was inhibited but lactic acid bacteria still reached high numbers after 24 h. A more detailed study of the growth of low numbers of L. monocytogenes during enrichment of minced beef in TSB revealed that growth of L. monocytogenes ceased at a cell concentration of about 102 cfu/ml when lactic acid bacteria entered stationary phase. However in ONE Broth growth of lactic acid bacteria was slower than in TSB with a longer lag time allowing L. monocytogenes to achieve much higher numbers before lactic acid bacteria reached stationary phase. This work has identified the relative inhibitory effects of different components of a natural food microflora and shown that the ability of low numbers of L. monocytogenes to achieve high cell concentrations is highly dependent on the extent to which enrichment media are able to inhibit or delay growth of the more effective competitors.
Resumo:
There appears to be a large mis-match between (1) the advice given on milk/dairy foods by various authorities, (2) public perceptions of harm from the consumption of milk and dairy products and, (3) the evidence from long-term prospective cohort studies. These studies provide convincing evidence that increased consumption of milk can lead to reductions in the risk of vascular disease and possibly some cancers and provide an overall survival advantage. The volume of evidence available for milk products such as cheese and butter is however surprisingly limited and too small to come to any clear conclusions as to their effects on health.
Resumo:
This study investigated the potential application of mid-infrared spectroscopy (MIR 4,000–900 cm−1) for the determination of milk coagulation properties (MCP), titratable acidity (TA), and pH in Brown Swiss milk samples (n = 1,064). Because MCP directly influence the efficiency of the cheese-making process, there is strong industrial interest in developing a rapid method for their assessment. Currently, the determination of MCP involves time-consuming laboratory-based measurements, and it is not feasible to carry out these measurements on the large numbers of milk samples associated with milk recording programs. Mid-infrared spectroscopy is an objective and nondestructive technique providing rapid real-time analysis of food compositional and quality parameters. Analysis of milk rennet coagulation time (RCT, min), curd firmness (a30, mm), TA (SH°/50 mL; SH° = Soxhlet-Henkel degree), and pH was carried out, and MIR data were recorded over the spectral range of 4,000 to 900 cm−1. Models were developed by partial least squares regression using untreated and pretreated spectra. The MCP, TA, and pH prediction models were improved by using the combined spectral ranges of 1,600 to 900 cm−1, 3,040 to 1,700 cm−1, and 4,000 to 3,470 cm−1. The root mean square errors of cross-validation for the developed models were 2.36 min (RCT, range 24.9 min), 6.86 mm (a30, range 58 mm), 0.25 SH°/50 mL (TA, range 3.58 SH°/50 mL), and 0.07 (pH, range 1.15). The most successfully predicted attributes were TA, RCT, and pH. The model for the prediction of TA provided approximate prediction (R2 = 0.66), whereas the predictive models developed for RCT and pH could discriminate between high and low values (R2 = 0.59 to 0.62). It was concluded that, although the models require further development to improve their accuracy before their application in industry, MIR spectroscopy has potential application for the assessment of RCT, TA, and pH during routine milk analysis in the dairy industry. The implementation of such models could be a means of improving MCP through phenotypic-based selection programs and to amend milk payment systems to incorporate MCP into their payment criteria.
Resumo:
Response surface methodology was used to study the effect of temperature, cutting time, and calcium chloride addition level on curd moisture content, whey fat losses, and curd yield. Coagulation and syneresis were continuously monitored using 2 optical sensors detecting light backscatter. The effect of the factors on the sensors’ response was also examined. Retention of fat during cheese making was found to be a function of cutting time and temperature, whereas curd yield was found to be a function of those 2 factors and the level of calcium chloride addition. The main effect of temperature on curd moisture was to increase the rate at which whey was expelled. Temperature and calcium chloride addition level were also found to affect the light backscatter profile during coagulation whereas the light backscatter profile during syneresis was a function of temperature and cutting time. The results of this study suggest that there is an optimum firmness at which the gel should be cut to achieve maximum retention of fat and an optimum curd moisture content to maximize product yield and quality. It was determined that to maximize curd yield and quality, it is necessary to maximize firmness while avoiding rapid coarsening of the gel network and microsyneresis. These results could contribute to the optimization of the cheese-making process.
Resumo:
The objective of this study was to investigate a novel light backscatter sensor, with a large field of view relative to curd size, for continuous on-line monitoring of coagulation and syneresis to improve curd moisture content control. A three-level, central composite design was employed to study the effects of temperature, cutting time, and CaCl2 addition on cheese making parameters. The sensor signal was recorded and analyzed. The light backscatter ratio followed a sigmoid increase during coagulation and decreased asymptotically after gel cutting. Curd yield and curd moisture content were predicted from the time to the maximum slope of the first derivative of the light backscatter ratio during coagulation and the decrease in the sensor response during syneresis. Whey fat was affected by coagulation kinetics and cutting time, suggesting curd rheological properties at cutting are dominant factors determining fat losses. The proposed technology shows potential for on-line monitoring of coagulation and syneresis. 2007 Elsevier Ltd. All rights reserved..
Resumo:
Dietary regulation of appetite may contribute to the prevention and management of excess body weight. The present study examined the effect of consumption of individual dairy products as snacks on appetite and subsequent ad libitum lunch energy intake. In a randomised cross-over trial, forty overweight men (age 32 (sd 9) years; BMI 27 (sd 2) kg/m2) attended four sessions 1 week apart and received three isoenergetic (841 kJ) and isovolumetric (410 ml) servings of dairy snacks or water (control) 120 min after breakfast. Appetite profile was determined throughout the morning and ad libitum energy intake was assessed 90 min after the intake of snacks. Concentrations of amino acids, glucose, insulin, ghrelin and peptide tyrosine tyrosine were measured at baseline (0 min) and 80 min after the intake of snacks. Although the results showed that yogurt had the greatest suppressive effect on appetite, this could be confounded by the poor sensory ratings of yogurt. Hunger rating was 8, 10 and 24 % (P < 0·001) lower after the intake of yogurt than cheese, milk and water, respectively. Energy intake was 11, 9 and 12 % (P < 0·02) lower after the intake of yogurt, cheese and milk, respectively, compared with water (4312 (se 226) kJ). Although there was no difference in the postprandial responses of hormones, alanine and isoleucine concentrations were higher after the intake of yogurt than cheese and milk (P < 0·05). In conclusion, all dairy snacks reduced appetite and lunch intake compared with water. Yogurt had the greatest effect on suppressing subjective appetite ratings, but did not affect subsequent food intake compared with milk or cheese.
Resumo:
Milk oligosaccharides are believed to have beneficial biological properties. Caprine milk has a relatively high concentration of oligosaccharides in comparison to other ruminant milks and has the closest oligosaccharide profile to human milk. The first stage in recovering oligosaccharides from caprine milk whey, a by-product of cheese making, was accomplished by ultrafiltration to remove proteins and fat globules, leaving more than 97% of the initial carbohydrates, mainly lactose, in the permeate. The ultrafiltered permeate was further processed using a 1 kDa ‘tight’ ultrafiltration membrane, which retained less than 7% of the remaining lactose. The final retentate was fractionated by preparative scale molecular size exclusion chromatography, to yield 28 fractions, of which oligosaccharide-rich fractions were detected somewhere between fractions 9/10 to 16/17, suitable for functionality and gut health promotion testing. All fractions were evaluated for their oligosaccharide and carbohydrate profiles using three complementary analytical methods.