834 resultados para Glued laminated lumber


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study is based on Cenomanian sediments of Ocean Drilling Program (ODP) Sites 1258 and 1260 from Demerara Rise (Leg 207, western tropical Atlantic, off Suriname, ~1000 and ~500 m paleo-water depth, respectively). Studied sediments consist of laminated black shales with TOC values between 3 and 18% and include the Mid Cenomanian Event (MCE), a positive carbon isotope excursion predating the well-known Oceanic Anoxic Event 2 (OAE 2). Benthic foraminiferal assemblages of the continuously eutrophic environment at Demerara Rise are characterized by low diversities (<= 9 species per sample) and large fluctuations in abundances, indicating oxygen depletion and varying organic matter fluxes. Dominant species at both sites are Bolivina anambra, Gabonita levis, Gavelinella dakotensis, Neobulimina albertensis, Praebulimina prolixa, and Tappanina cf. laciniosa. Benthic foraminiferal assemblages across the MCE show a threefold pattern: (1) stable ecological conditions below the MCE interval indicated by relatively high oxygenation and fluctuating organic matter flux, (2) decreasing oxygenation and/or higher organic matter flux during the MCE with decreasing benthic foraminiferal numbers and diversities (Site 1258) and a dominance of opportunistic species (Site 1260), and (3) anoxic to slightly dysoxic bottom-water conditions above the MCE as indicated by very low diversities and abundances or even the absence of benthic foraminifera. Slightly dysoxic conditions prevailed until OAE 2 at Demerara Rise. A comparison with other Atlantic Ocean and Tethyan sections indicates that the MCE reflects a paleoceanographic turning point towards lower bottom-water oxygenation, at least in the proto-North Atlantic Ocean and in the Tethyan and Boreal Realms. This general trend towards lower oxygenation of bottom waters across the MCE is accompanied by ongoing climate warming in combination with rising sea-level and the development of vast shallow epicontinental seas during the Middle and Late Cenomanian. These changes are proposed to have favoured the formation of warm and saline waters that may have contributed to intermediate- and deep-water masses at least in the restricted proto-North Atlantic and Tethyan Ocean basins, poor oxygenation of the Late Cenomanian sediments, and the changes in benthic foraminiferal assemblages across the MCE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Saanich Inlet has been a highly productive fjord since the last glaciation. During ODP Leg 169S, nearly 70 m of Holocene sediments were recovered from Hole 1034 at the center of the inlet. The younger sediments are laminated, anaerobic, and rich in organic material (1-2.5 wt.% Corg), whereas the older sediments below 70 mbsf are non-laminated, aerobic, with glacio-marine characteristics and have a significantly lower organic matter content. This difference is also reflected in the changes of interstitial fluids, and in biomarker compositions and their carbon isotope signals. The bacterially-derived hopanoid 17alpha(H),21beta(H)-hop-22(29)-ene (diploptene) occurs in Saanich Inlet sediments throughout the Holocene but is not present in Pleistocene glacio-marine sediments. Its concentration increases after ~6000 years BP up to present time to about 70 µg/g Corg, whereas terrigenous biomarkers such as the n-alkane C31 are low throughout the Holocene (<51 µg/g Corg) and even slightly decrease to 36 µg/g Corg at the most recent time. The increasing concentrations of diploptene in sediments younger than ~6000 years BP separate a recent period of higher primary productivity, stronger anoxic bottom waters, and higher bacterial activity from an older period with lesser activity, heretofore undifferentiated. Carbon isotopic compositions of diploptene in the Holocene are between ~31.5 and ~39.6 per mil PDB after ~6000 years BP. These differences in the carbon isotopic record of diploptene probably reflect changes in microbial community structure of bacteria living at the oxic-anoxic interface of the overlying water column. The heavier isotope values are consistent with the activity of nitrifying bacteria and the lighter isotope values with that of aerobic methanotrophic bacteria. Therefore, intermediate delta13C values probably represent mixtures between the populations. In contrast, carbon isotopic compositions of n-C31 are roughly constant at ~31.4 ± 1.1 per mil PDB throughout the Holocene, indicating a uniform input from cuticular waxes of higher plants. Prior to ~6000 years BP, diploptene enriched in 13C of up to -26.3 per mil PDB is indicative of cyanobacteria living in the photic zone and suggests a period of lower primary productivity, more oxygenated bottom waters, and hence lower bacterial activity during the earliest Holocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge of past natural flood variability and controlling climate factors is of high value since it can be useful to refine projections of the future flood behavior under climate warming. In this context, we present a seasonally resolved 2000 year long flood frequency and intensity reconstruction from the southern Alpine slope (North Italy) using annually laminated (varved) lake sediments. Floods occurred predominantly during summer and autumn, whereas winter and spring events were rare. The all-season flood frequency and, particularly, the occurrence of summer events increased during solar minima, suggesting solar-induced circulation changes resembling negative conditions of the North Atlantic Oscillation as controlling atmospheric mechanism. Furthermore, the most extreme autumn events occurred during a period of warm Mediterranean sea surface temperature. Interpreting these results in regard to present climate change, our data set proposes for a warming scenario, a decrease in summer floods, but an increase in the intensity of autumn floods at the South-Alpine slope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined diatom assemblages in a series of remarkable laminated diatomaceous ooze (LDO) horizons in the marine sediments from Integrated Ocean Drilling Program (IODP) Site U1304 to reconstruct the middle-to-late Pleistocene paleoceanographic evolution of the northern North Atlantic Ocean. Four confirmed diatom biohorizons combined with calcareous nannofossil and paleomagnetic stratigraphies established the chronological framework for the material. The planktonic, araphid, needle-like species Thalassiothrix longissima was the greatest contributor to the LDO facies. From the results of a principal component analysis using the percent abundances of 65 significant (p = 5%) diatom taxa, except for Tx. longissima, which was extremely dominant in almost all horizons observed, we identified two principal component (PC) axes. Taxa probably associated with the stratigraphic distribution of the major zonal marker Neodenticula seminae (ranging from 1.26 to 0.84 Ma in this ocean) loaded on PC1 with a high value. PC2 was related to the ocean surface temperature. The stratigraphic variability of the PC2 score indicated that switching between warm- and cold-water assemblages occurred concurrently with LDO deposition (or extreme Tx. longissima dominance) episodes in several horizons (particularly after 0.84 Ma), suggesting that the Subarctic Convergence (SAC) oceanic front passed over Site U1304 during Pleistocene glacial/interglacial cycles. Our floral evidence supports the model of nearly monospecific LDO formation caused by the enhanced physical accumulation of particular diatoms such as Tx. longissima. On the other hand, Nd. seminae, which probably contributes to spring phytoplankton blooms in the modern ocean, was present only between 1.26 and 0.84 Ma in this area. Thus, we infer that the main contributor of export flux in the regional annual primary production cycle would have shifted drastically from one of a spring phytoplankton bloom leader (Nd. seminae) to minor but mass dump assemblages (Tx. longissima etc.) in the mid-Pleistocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is based on Santonian-Campanian sediments of Ocean Drilling Program Sites 1257 (2951 mbsl) and 1259 (2353 mbsl) from Demerara Rise (Leg 207, western tropical Atlantic, off Surinam). According to its position, Demerara Rise should have been influenced by the early opening of the Equatorial Atlantic Gateway and the establishment of a bottom-water connection between the central and South Atlantic Oceans during the Late Cretaceous. The investigated benthic foraminiferal faunas demonstrate strong fluctuations in bottom-water oxygenation and organic-matter flux to the sea-floor. The Santonian-earliest Campanian interval is characterised by laminated black shales without benthic foraminifera in the lowermost part, followed by an increasing number of benthic foraminifera. These are indicative of anoxic to dysoxic bottom waters, high organic-matter fluxes and a position within the oxygen minimum zone. At the shallower Site 1259, benthic foraminifera occurred earlier (Santonian) than at the deeper Site 1257 (Early Campanian). This suggests that the shallower site was characterised by fluctuations in the oxygen minimum zone and that a re-oxygenation of the sea-floor started considerably earlier at shallower water-depths. We speculate that this re-oxygenation was related to the ongoing opening of the Equatorial Atlantic Gateway. A condensed glauconitic chalk interval of Early Campanian age (Nannofossil Zone CC18 of Sissingh) overlies the laminated shales at both sites. This interval contains benthic foraminiferal faunas reflecting increasing bottom-water oxygenation and reduced organic-matter flux. This glauconitic chalk is strongly condensed and contains most of the Lower and mid-Campanian. Benthic foraminiferal species indicative of well-oxygenated and more oligotrophic environments characterise the overlying mid- to Upper Campanian nannofossil chalk. During deposition of the nannofossil chalk, a permanent deep-water connection between the central and South Atlantic Oceans is proposed, leading to ventilated and well-oxygenated bottom waters. If this speculation is true, the establishment of a permanent deep-water connection between the central and South Atlantic Oceans terminated Oceanic Anoxic Event 3 "black shale" formation in the central and South Atlantic marginal basins during the Early Campanian (Nannofossil Zone CC18) and led to well-oxygenated bottom waters in the entire Atlantic Ocean during the Late Campanian (at least from Nannofossil Zone CC22 onwards).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kaolinite, goethite, minor hematite, and gibbsite were found in fluvial upper Lower Cretaceous basal sediment from the Southern Kerguelen Plateau, Sites 748 and 750, 55°S latitude. This mineral assemblage, derived from the weathering of basalt, indicates near-tropical weathering conditions with high orographic rainfall, at least 100 cm per year. The climate deteriorated by the Turonian or Coniacian, as indicated by the decline in kaolinite content of this sediment. The Upper Cretaceous sediment at Site 748 consists of 200 m of millimeter-laminated, sparsely fossiliferous, wood-bearing glauconitic siltstone and clay stone with siderite concretions deposited on a shelf below wave base. Some graded and cross beds indicate that storms swept over the shelf and reworked the sediment. Overlying this unit is 300 m of intermittently partly silicified, bryozoan-inoceramid-echinoderm-rich glauconitic packstones, grainstones, and wackestones. The dominant clay mineral in both units is identical to the mineral composition of the glauconite pellets: randomly interstratified smectite-mica. The clay fraction has a higher percent of expandable layers than the mineral of the glauconite pellets, and the clay of the underlying subunit has a higher percentage of expandable layers than the clay of the carbonate subunit. Potassium levels mirror these mineral variations, with higher K levels in minerals that have a lower percentage of expandable layers. The decrease in expandability of the mineral in the upper subunit is attributed to diagenesis, the result of higher porosity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Millennial-scale paleoceanographic changes in the Bering Sea during the last 71 kyrs were reconstructed using geochemical and isotope proxies (biogenic opal, CaCO3, and total organic carbon (TOC), nitrogen and carbon isotopes of sedimentary organic matters) and microfossil (radiolaria and foraminifera) data from two cores (PC23A and PC24A) which were collected from the northern continental slope area at intermediate water depths. Biogenic opal and TOC contents were generally high with high sedimentation rates during the last deglaciation. Laminated sediment depositions during the Early-Holocene (EH) and Bølling-Allerød (BA) were closely related with the increased primary productivity recorded by high biogenic opal and TOC contents and high d15N values. Enhanced surface-water productivity was attributed to increased nutrient supply from strengthened Bering Slope Current (BSC) and from increased amount of glacial melt-water, resulting in high C/N ratios and low d13C values, and high proportion of Rhizoplegma boreale during the last deglaciation. In contrast, low surface-water productivity during the last glacial period was due to depleted nutrient supply caused by strong stratification and to restricted phytoplankton bloom by extensive sea ice distribution under cold climates. Extensive formation of sea ice produces more oxygen-rich intermediate-water, leading to oxic bottom-water conditions due to active ventilation, which favored good preservation of oxic benthic foraminifera species. Remarkable CaCO3 peaks coeval with high biogenic opal and TOC contents in both cores during MIS 3 to MIS 4 are most likely correlated with Dansgaard-Oeschger (D-O) events. High d15N and d13Corg values during D-O interstadials support increased surface-water productivity resulting from nutrients supplied mainly by intensified BSC. During the EH, BA and D-O interstadials, dominant benthic foraminifera species indicate dysoxic bottom-water conditions as a result of increased surface-water productivity and weak ventilation of intermediate-water with mitigated sea ice development caused by strengthening of the Alaskan Stream. It is of note that the bottom-water conditions and formation of intermediate-water in the Bering Sea during the last glacial period are related to the variation of dissolved oxygen concentration of the bottom-water in the northeastern Pacific and to strong ventilation of intermediate-water in the northwestern Pacific. Thus, the millennial-scale paleoceanographic events in the Bering Sea during the D-O interstadials are closely associated with the intermediate-water ventilation, ultimately leading to weakening of North Pacific Intermediate Water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 450 year spring-summer flood layer time series at seasonal resolution has been established from the varved sediment record of Lake Ammersee (southern Germany), applying a novel methodological approach. The main results are (1) the attainment of a precise chronology by microscopic varve counting, (2) the identification of detrital layers representing flood-triggered fluxes of catchment material into the lake, and (3) the recognition of the seasonality of these flood layers from their microstratigraphic position within a varve. Tracing flood layers in a proximal and a distal core and correlating them by application of the precise chronology provided information on the depositional processes. Comparing the seasonal flood layer record with daily runoff data of the inflowing River Ammer for the period from 1926 to 1999 allowed the definition of an approximate threshold in flood magnitude above which the formation of flood layers becomes very likely. Moreover, it was possible for the first time to estimate the "completeness" of the flood layer time series and to recognize that mainly floods in spring and summer, representing the main flood seasons in this region, are well preserved in the sediment archive. Their frequency distribution over the entire 450 year time series is not stationary but reveals maxima for colder periods of the Little Ice Age when solar activity was reduced. The observed spring-summer flood layer frequency further shows trends similar to those of the occurrence of flood-prone weather regimes since A.D. 1881, probably suggesting a causal link between solar variability and changes in midlatitude atmospheric circulation patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dataset includes palaeomagnetic inclination directions and density, reflectance (CIEL*a*b*) and red intensity (RGB) measurements from 100 metres of diatomaceous lake sediments from the Oligocene/Miocene Foulden Maar, New Zealand.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies combining sedimentological and biological evidence to reconstruct Holocene climate beyond the major changes, and especially seasonality, are rare in Europe, and are nearly completely absent in Germany. The present study tries to reconstruct changes of seasonality from evidence of annual algal successions within the framework of well-established pollen zonation and 14C-AMS dates from terrestrial plants. Laminated Holocene sediments in Lake Jues (10°20.70' E, 51°39.30' N, 241 m a.s.l.), located at the SW margin of the Harz Mountains, central Germany, were studied for sediment characteristics, pollen, diatoms and coccal green algae. An age model is based on 21 calibrated AMS radiocarbon dates from terrestrial plants. The sedimentary record covers the entire Holocene period. Trophic status and circulation/stagnation patterns of the lake were inferred from algal assemblages, the subannual structure of varves and the physico-chemical properties of the sediment. During the Holocene, mixing conditions alternated between di-, oligo- and meromictic depending on length and variability of spring and fall periods, and the stability of winter and summer weather. The trophic state was controlled by nutrient input, circulation patterns and the temperature-dependent rates of organic production and mineralization. Climate shifts, mainly in phase with those recorded from other European regions, are inferred from changing limnological conditions and terrestrial vegetation. Significant changes occurred at 11,600 cal. yr. BP (Preboreal warming), between 10,600 and 10,100 cal. yr. BP (Boreal cooling), and between 8,400 and 4,550 cal. yr. BP (warm and dry interval of the Atlantic). Since 4,550 cal. yr. BP the climate became gradually cooler, wetter and more oceanic. This trend was interrupted by warmer and dryer phases between 3,440 and 2,850 cal. yr. BP and, likely, between 2,500 and 2,250 cal. yr. BP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 207 recovered expanded sections of organic-carbon-rich laminated shales on Demerara Rise (western tropical Atlantic). High-resolution organic carbon isotope and total organic carbon (TOC) records are presented, which span the Cenomanian-Turonian boundary interval (CTBI), including the Oceanic Anoxic Event (OAE) 2, from four sites oriented along a NW striking depth transect. These records represent the first high-resolution carbon isotope records across OAE 2 from the South American margin of the tropical Atlantic. Due to the scarcity of age significant fossils, the main purpose of this study was to develop a detailed carbon isotope stratigraphy in order to correlate the CTBI across the depth transect and to tie this to biostratigraphically well-defined sections in the Western Interior Basin (Pueblo, USA), boreal shelf seas (Eastbourne, England), and western Tethys (Oued Mellegue, Tunisia). All four sections studied document a 6 per mil increase of d13Corg values at the base of the CTBI, which is followed by an interval of elevated d13Corg values and a subsequent decrease. Our results supply an important stratigraphic base for subsequent paleoceanographic studies on Late Cenomanian to Early Turonian sediments from Demerara Rise and elsewhere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution palynological analysis on annually laminated sediments of Sihailongwan Maar Lake (SHL) provides new insights into the Holocene vegetation and climate dynamics of NE China. The robust chronology of the presented record is based on varve counting and AMS radiocarbon dates from terrestrial plant macro-remains. In addition to the qualitative interpretation of the pollen data, we provide quantitative reconstructions of vegetation and climate based on the method of biomization and weighted averaging partial least squares regression (WA-PLS) technique, respectively. Power spectra were computed to investigate the frequency domain distribution of proxy signals and potential natural periodicities. Pollen assemblages, pollen-derived biome scores and climate variables as well as the cyclicity pattern indicate that NE China experienced significant changes in temperature and moisture conditions during the Holocene. Within the earliest phase of the Holocene, a large-scale reorganization of vegetation occurred, reflecting the reconstructed shift towards higher temperatures and precipitation values and the initial Holocene strengthening and northward expansion of the East Asian summer monsoon (EASM). Afterwards, summer temperatures remain at a high level, whereas the reconstructed precipitation shows an increasing trend until approximately 4000 cal. yr BP. Since 3500 cal. yr BP, temperature and precipitation values decline, indicating moderate cooling and weakening of the EASM. A distinct periodicity of 550-600 years and evidence of a Mid-Holocene transition from a temperature-triggered to a predominantly moisture-triggered climate regime are derived from the power spectra analysis. The results obtained from SHL are largely consistent with other palaeoenvironmental records from NE China, substantiating the regional nature of the reconstructed vegetation and climate patterns. However, the reconstructed climate changes contrast with the moisture evolution recorded in S China and the mid-latitude (semi-)arid regions of N China. Whereas a clear insolation-related trend of monsoon intensity over the Holocene is lacking from the SHL record, variations in the coupled atmosphere-Pacific Ocean system can largely explain the reconstructed changes in NE China.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cretaceous and Paleogene sediments recovered during Ocean Drilling Program Leg 207 can be divided into three broad modes of deposition: synrift clastics (lithologic Unit V), organic matter-rich, laminated black shales (Unit IV), and open-marine chalk and calcareous claystones (Units III-I). The aim of this study is to provide a quantitative geochemical characterization of sediments representing these five lithologic units. For this work we used the residues (squeeze cakes) obtained from pore water sampling. Samples were analyzed for bulk parameters (total inorganic carbon, total organic carbon, and S) and by X-ray fluorescence for major (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, and P) and selected minor (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Rb, Sr, U, V, Y, Zn, and Zr) elements. Inductively coupled plasma-mass spectrometry analyses for rare earth elements (REEs) were performed on acid digestions of the squeeze cake samples from Site 1258. The major element composition is governed by the mixture of a terrigenous detrital component of roughly average shale (AS) composition with biogenous carbonate and silica. The composition of the terrigenous detritus is close to AS in Units II-IV. For Unit I, a more weathered terrigenous source is suggested. Carbonate contents reach >60 wt% on average in chalks and calcareous claystones of Units II-IV. The SiO2 contribution in excess of the normal terrigenous-detrital background indicates the presence of biogenous silica, with highest amounts in Units II and III. The contents of coarse-grained material (quartz) are enhanced in Unit V, where Ti and Zr contents are also high. This indicates a high-energy depositional environment. REE patterns are generally similar to AS. A more pronounced negative Ce anomaly in Unit IV may indicate low-oxygen conditions in the water column. The Cretaceous black shales of Unit IV are clearly enriched in redox-sensitive and stable sulfide-forming elements (Mo, V, Zn, and As). High phosphate contents point toward enhanced nutrient supply and high bioproductivity. Ba/Al ratios are rather high throughout Unit IV despite the absence of sulfate in the pore water, indicating elevated primary production. Manganese contents are extremely low for most of the interval studied. Such an Mn depletion is only possible in an environment where Mn was mobilized and transported into an expanded oxygen minimum zone ("open system"). The sulfur contents show a complete sulfidation of the reactive iron of Unit IV and a significant excess of sulfur relative to that of iron, which indicates that part of the sulfur was incorporated into organic matter. We suppose extreme paleoenvironmental conditions during black shale deposition: high bioproductivity like in recent coastal upwelling settings together with severe oxygen depletion if not presence of hydrogen sulfide in the water column.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent advances in the chronology and the palaeoclimatic understanding of Antarctic ice core records point towards a larger heterogeneity of latitudinal climate fluctuations than previously thought. Thus, realistic palaeoclimate reconstructions rely in the development of a tight array of well-constrained records with a dense latitudinal coverage. Climatic records from southernmost South America are critical cornerstones to link these Antarctic palaeoclimatic archives with their South American counterparts. At 54° S on the Island of Tierra del Fuego, Lago Fagnano is located in one of the most substantially and extensively glaciated regions of southernmost South America during the Late Pleistocene. This elongated lake is the largest (~110km long) and non-ice covered lake at high southern latitudes. A multi-proxy study of selected cores allows the characterisation of a Holocene sedimentary record. Detailed petrophysical, sedimentological and geochemical studies of a complete lacustrine laminated sequence reveal variations in major and trace elements, as well as organic content, suggesting high variability in environmental conditions. Comparison of these results with other regional records allows the identification of major known late Holocene climatic intervals and the proposal for a time for the onset of the Southern Westerlies in Tierra del Fuego. These results improve our understanding of the forcing mechanisms behind climate change in southernmost Patagonia.