916 resultados para Gesture based audio user interface
Resumo:
Developers of interactive software are confronted by an increasing variety of software tools to help engineer the interactive aspects of software applications. Not only do these tools fall into different categories in terms of functionality, but within each category there is a growing number of competing tools with similar, although not identical, features. Choice of user interface development tool (UIDT) is therefore becoming increasingly complex.
Resumo:
Desktop user interface design originates from the fact that users are stationary and can devote all of their visual resource to the application with which they are interacting. In contrast, users of mobile and wearable devices are typically in motion whilst using their device which means that they cannot devote all or any of their visual resource to interaction with the mobile application -- it must remain with the primary task, often for safety reasons. Additionally, such devices have limited screen real estate and traditional input and output capabilities are generally restricted. Consequently, if we are to develop effective applications for use on mobile or wearable technology, we must embrace a paradigm shift with respect to the interaction techniques we employ for communication with such devices.This paper discusses why it is necessary to embrace a paradigm shift in terms of interaction techniques for mobile technology and presents two novel multimodal interaction techniques which are effective alternatives to traditional, visual-centric interface designs on mobile devices as empirical examples of the potential to achieve this shift.
Resumo:
This paper is devoted to the learning of event programming by using Visual C# in specialized training in Informatics in high schools. Some basic tools and technologies for the implementation of graphics and animation in C# are discussed. Two example problems are proposed.
Resumo:
This paper deals with communicational breakdowns and misunderstandings in computer mediated communication (CMC) and ways to recover from them or to prevent them. The paper describes a case study of CMC conducted in a company named Artigiani. We observed communication and conducted content analysis of e-mail messages, focusing on message exchanges between customer service representatives (CSRs) and their contacts. In addition to task management difficulties, we identified communication breakdowns that result from differences between perspectives, and from the lack of contextual information, mainly technical background and professional jargon at the customers’ side. We examined possible ways to enhance CMC and accordingly designed a prototype for an e-mail user interface that emphasizes a communicational strategy called contextualization as a central component for obtaining effective communication and for supporting effective management and control of organizational activities, especially handling orders, price quoting, and monitoring the supply and installation of products.
Resumo:
The premise of this dissertation is to create a highly integrated platform that combines the most current recording technologies for brain research through the development of new algorithms for three-dimensional (3D) functional mapping and 3D source localization. The recording modalities that were integrated include: Electroencephalography (EEG), Optical Topographic Maps (OTM), Magnetic Resonance Imaging (MRI), and Diffusion Tensor Imaging (DTI). This work can be divided into two parts: The first part involves the integration of OTM with MRI, where the topographic maps are mapped to both the skull and cortical surface of the brain. This integration process is made possible through the development of new algorithms that determine the probes location on the MRI head model and warping the 2D topographic maps onto the 3D MRI head/brain model. Dynamic changes of the brain activation can be visualized on the MRI head model through a graphical user interface. The second part of this research involves augmenting a fiber tracking system, by adding the ability to integrate the source localization results generated by commercial software named Curry. This task involved registering the EEG electrodes and the dipole results to the MRI data. Such Integration will allow the visualization of fiber tracts, along with the source of the EEG, in a 3D transparent brain structure. The research findings of this dissertation were tested and validated through the participation of patients from Miami Children Hospital (MCH). Such an integrated platform presented to the medical professionals in the form of a user-friendly graphical interface is viewed as a major contribution of this dissertation. It should be emphasized that there are two main aspects to this research endeavor: (1) if a dipole could be situated in time at its different positions, its trajectory may reveal additional information on the extent and nature of the brain malfunction; (2) situating such a dipole trajectory with respect to the fiber tracks could ensure the preservation of these fiber tracks (axons) during surgical interventions, preserving as a consequence these parts of the brain that are responsible for information transmission.
Resumo:
This thesis research describes the design and implementation of a Semantic Geographic Information System (GIS) and the creation of its spatial database. The database schema is designed and created, and all textual and spatial data are loaded into the database with the help of the Semantic DBMS's Binary Database Interface currently being developed at the FIU's High Performance Database Research Center (HPDRC). A friendly graphical user interface is created together with the other main system's areas: displaying process, data animation, and data retrieval. All these components are tightly integrated to form a novel and practical semantic GIS that has facilitated the interpretation, manipulation, analysis, and display of spatial data like: Ocean Temperature, Ozone(TOMS), and simulated SeaWiFS data. At the same time, this system has played a major role in the testing process of the HPDRC's high performance and efficient parallel Semantic DBMS.
Resumo:
A man-machine system called teleoperator system has been developed to work in hazardous environments such as nuclear reactor plants. Force reflection is a type of force feedback in which forces experienced by the remote manipulator are fed back to the manual controller. In a force-reflecting teleoperation system, the operator uses the manual controller to direct the remote manipulator and receives visual information from a video image and/or graphical animation on the computer screen. This thesis presents the design of a portable Force-Reflecting Manual Controller (FRMC) for the teleoperation of tasks such as hazardous material handling, waste cleanup, and space-related operations. The work consists of the design and construction of a prototype 1-Degree-of-Freedom (DOF) FRMC, the development of the Graphical User Interface (GUI), and system integration. Two control strategies - PID and fuzzy logic controllers are developed and experimentally tested. The system response of each is analyzed and evaluated. In addition, the concept of a telesensation system is introduced, and a variety of design alternatives of a 3-DOF FRMC are proposed for future development.
Resumo:
Questa tesi si occupa della realizzazione, in ottica Modern UI, di una nuova interfaccia per l'applicazione Android del sistema domotico Home Manager. Dopo una prima fase di analisi preliminare, si affronta la progettazione dell'app, dall'analisi dei requisiti - ivi incluso il nuovo strumento di sviluppo da utilizzare, Android Studio - alla successiva analisi e progettazione della nuova soluzione, seguita da implementazione e collaudo.
Resumo:
LAPMv2 is a research software solution specifically developed to allow marine scientists to produce geo-referenced visual maps of the seafloor, known as mosaics, from a set of underwater images and navigation data. LAPMv2 has a graphical user interface that guides the user through the different steps of the mosaicking workflow. LAPMv2 runs on 64-bit Windows, MacOS X and Linux operating systems. There are two versions for each operating system: (1) the WEB-installers (lightweight but require an internet connection during the installation) and (2) the MCR installers (large files but can be installed on computer without internet-connection). The user manual explains how to install and start the program on the different operating systems. Go to http://www.lapm.eu.com for further information about the latest versions of LAPMv2.
Resumo:
Funding for this study was received from the Chief Scientist Office for Scotland. We would like to thank Asthma UK and Asthma UK Scotland for facilitating the advertisement of the study pilot and consultative user group. Thanks to Dr Mark Grindle for his helpful discussions concerning narrative. Thanks also to Mr Mark Haldane who designed the characters, backgrounds, and user interface used within the 3D computer animation. Particular thanks to the participants of the consultative user group for their enthusiasm, comments, and suggestions at all stages of the intervention design.
Resumo:
Relatório de Estágio para a obtenção do grau de Mestre na área de Educação e Comunicação Multimédia
Resumo:
Precision medicine is an emerging approach to disease treatment and prevention that considers variability in patient genes, environment, and lifestyle. However, little has been written about how such research impacts emergency care. Recent advances in analytical techniques have made it possible to characterize patients in a more comprehensive and sophisticated fashion at the molecular level, promising highly individualized diagnosis and treatment. Among these techniques are various systematic molecular phenotyping analyses (e.g., genomics, transcriptomics, proteomics, and metabolomics). Although a number of emergency physicians use such techniques in their research, widespread discussion of these approaches has been lacking in the emergency care literature and many emergency physicians may be unfamiliar with them. In this article, we briefly review the underpinnings of such studies, note how they already impact acute care, discuss areas in which they might soon be applied, and identify challenges in translation to the emergency department (ED). While such techniques hold much promise, it is unclear whether the obstacles to translating their findings to the ED will be overcome in the near future. Such obstacles include validation, cost, turnaround time, user interface, decision support, standardization, and adoption by end-users.
Resumo:
Esta investigación aborda el consumo que los jóvenes universitarios de España y Brasil realizan de las publicaciones para tabletas. A través del estudio de seis casos –las revistas españolas Don, VisàVis y Quality Sport, y los vespertinos brasileños O Globo a Mais, de Río de Janeiro; Estadão Noite, de Sao Paulo; y Diário do Nordeste Plus, de Fortaleza– se aplica una metodología cualitativa, el test de usabilidad, para detectar qué aspectos ralentizan y entorpecen la navegación en las nuevas generaciones de usuarios de medios móviles. A pesar de la influencia de las revistas impresas en la configuración de las publicaciones para tableta, los datos muestran que el usuario necesita “entrenarse” para conocer unas opciones de interacción a veces poco intuitivas o para las que carece de la madurez visual necesaria. Por ello las publicaciones más sencillas obtienen los mejores resultados de usabilidad.
Resumo:
The physical appearance and behavior of a robot is an important asset in terms of Human-Computer Interaction. Multimodality is also fundamental, as we humans usually expect to interact in a natural way with voice, gestures, etc. People approach complex interaction devices with stances similar to those used in their interaction with other people. In this paper we describe a robot head, currently under development, that aims to be a multimodal (vision, voice, gestures,...) perceptual user interface.
Resumo:
During the development of a new treatment space for the UK emergency ambulance participatory observations with front-line clinicians revealed the need for an integrated patient monitoring, communication and navigation system. The research identified the different information touch-points and requirements through modes of use analysis, day-in-the-life study and simulation workshops with clinicians. Emergency scenario and role-play with paramedics identified 5 distinct ambulance modes of use. Information flow diagrams were created and checked by paramedics and digital User Interface (UI) wireframes were developed and evaluated by clinicians during clinical evaluations. Feedback from clinicians defined UI design specification further leading to a final design proposal. This research was a further development from the 2007 EPSRC funded “Smart Pods” project. The resulting interactive prototype was co-designed in collaboration with ambulance crews and provides a vision of what could be achieved by integrating well-proven IT technologies and protocols into a package relevant in the emergency medicine field. The system has been reviewed by over 40 ambulance crews and is part of a newly co-designed ambulance treatment space.