892 resultados para Generalized Logistic Model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we discuss inferential aspects of the measurement error regression models with null intercepts when the unknown quantity x (latent variable) follows a skew normal distribution. We examine first the maximum-likelihood approach to estimation via the EM algorithm by exploring statistical properties of the model considered. Then, the marginal likelihood, the score function and the observed information matrix of the observed quantities are presented allowing direct inference implementation. In order to discuss some diagnostics techniques in this type of models, we derive the appropriate matrices to assessing the local influence on the parameter estimates under different perturbation schemes. The results and methods developed in this paper are illustrated considering part of a real data set used by Hadgu and Koch [1999, Application of generalized estimating equations to a dental randomized clinical trial. Journal of Biopharmaceutical Statistics, 9, 161-178].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Birnbaum-Saunders (BS) model is a positively skewed statistical distribution that has received great attention in recent decades. A generalized version of this model was derived based on symmetrical distributions in the real line named the generalized BS (GBS) distribution. The R package named gbs was developed to analyze data from GBS models. This package contains probabilistic and reliability indicators and random number generators from GBS distributions. Parameter estimates for censored and uncensored data can also be obtained by means of likelihood methods from the gbs package. Goodness-of-fit and diagnostic methods were also implemented in this package in order to check the suitability of the GBS models. in this article, the capabilities and features of the gbs package are illustrated by using simulated and real data sets. Shape and reliability analyses for GBS models are presented. A simulation study for evaluating the quality and sensitivity of the estimation method developed in the package is provided and discussed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The generalized Birnbaum-Saunders (GBS) distribution is a new class of positively skewed models with lighter and heavier tails than the traditional Birnbaum-Saunders (BS) distribution, which is largely applied to study lifetimes. However, the theoretical argument and the interesting properties of the GBS model have made its application possible beyond the lifetime analysis. The aim of this paper is to present the GBS distribution as a useful model for describing pollution data and deriving its positive and negative moments. Based on these moments, we develop estimation and goodness-of-fit methods. Also, some properties of the proposed estimators useful for developing asymptotic inference are presented. Finally, an application with real data from Environmental Sciences is given to illustrate the methodology developed. This example shows that the empirical fit of the GBS distribution to the data is very good. Thus, the GBS model is appropriate for describing air pollutant concentration data, which produces better results than the lognormal model when the administrative target is determined for abating air pollution. Copyright (c) 2007 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modeling and analysis of lifetime data is an important aspect of statistical work in a wide variety of scientific and technological fields. Good (1953) introduced a probability distribution which is commonly used in the analysis of lifetime data. For the first time, based on this distribution, we propose the so-called exponentiated generalized inverse Gaussian distribution, which extends the exponentiated standard gamma distribution (Nadarajah and Kotz, 2006). Various structural properties of the new distribution are derived, including expansions for its moments, moment generating function, moments of the order statistics, and so forth. We discuss maximum likelihood estimation of the model parameters. The usefulness of the new model is illustrated by means of a real data set. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a two-step pseudo likelihood estimation technique for generalized linear mixed models with the random effects being correlated between groups. The core idea is to deal with the intractable integrals in the likelihood function by multivariate Taylor's approximation. The accuracy of the estimation technique is assessed in a Monte-Carlo study. An application of it with a binary response variable is presented using a real data set on credit defaults from two Swedish banks. Thanks to the use of two-step estimation technique, the proposed algorithm outperforms conventional pseudo likelihood algorithms in terms of computational time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the hglm package for fitting hierarchical generalized linear models. It can be used for linear mixed models and generalized linear mixed models with random effects for a variety of links and a variety of distributions for both the outcomes and the random effects. Fixed effects can also be fitted in the dispersion part of the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change has resulted in substantial variations in annual extreme rainfall quantiles in different durations and return periods. Predicting the future changes in extreme rainfall quantiles is essential for various water resources design, assessment, and decision making purposes. Current Predictions of future rainfall extremes, however, exhibit large uncertainties. According to extreme value theory, rainfall extremes are rather random variables, with changing distributions around different return periods; therefore there are uncertainties even under current climate conditions. Regarding future condition, our large-scale knowledge is obtained using global climate models, forced with certain emission scenarios. There are widely known deficiencies with climate models, particularly with respect to precipitation projections. There is also recognition of the limitations of emission scenarios in representing the future global change. Apart from these large-scale uncertainties, the downscaling methods also add uncertainty into estimates of future extreme rainfall when they convert the larger-scale projections into local scale. The aim of this research is to address these uncertainties in future projections of extreme rainfall of different durations and return periods. We plugged 3 emission scenarios with 2 global climate models and used LARS-WG, a well-known weather generator, to stochastically downscale daily climate models’ projections for the city of Saskatoon, Canada, by 2100. The downscaled projections were further disaggregated into hourly resolution using our new stochastic and non-parametric rainfall disaggregator. The extreme rainfall quantiles can be consequently identified for different durations (1-hour, 2-hour, 4-hour, 6-hour, 12-hour, 18-hour and 24-hour) and return periods (2-year, 10-year, 25-year, 50-year, 100-year) using Generalized Extreme Value (GEV) distribution. By providing multiple realizations of future rainfall, we attempt to measure the extent of total predictive uncertainty, which is contributed by climate models, emission scenarios, and downscaling/disaggregation procedures. The results show different proportions of these contributors in different durations and return periods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the electricity hourly load demand in the area covered by a utility situated in the southeast of Brazil. We propose a stochastic model which employs generalized long memory (by means of Gegenbauer processes) to model the seasonal behavior of the load. The model is proposed for sectional data, that is, each hour’s load is studied separately as a single series. This approach avoids modeling the intricate intra-day pattern (load profile) displayed by the load, which varies throughout days of the week and seasons. The forecasting performance of the model is compared with a SARIMA benchmark using the years of 1999 and 2000 as the out-of-sample. The model clearly outperforms the benchmark. We conclude for general long memory in the series.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta dissertação se propõe ao estudo de inferência usando estimação por método generalizado dos momentos (GMM) baseado no uso de instrumentos. A motivação para o estudo está no fato de que sob identificação fraca dos parâmetros, a inferência tradicional pode levar a resultados enganosos. Dessa forma, é feita uma revisão dos mais usuais testes para superar tal problema e uma apresentação dos arcabouços propostos por Moreira (2002) e Moreira & Moreira (2013), e Kleibergen (2005). Com isso, o trabalho concilia as estatísticas utilizadas por eles para realizar inferência e reescreve o teste score proposto em Kleibergen (2005) utilizando as estatísticas de Moreira & Moreira (2013), e é obtido usando a teoria assintótica em Newey & McFadden (1984) a estatística do teste score ótimo. Além disso, mostra-se a equivalência entre a abordagem por GMM e a que usa sistema de equações e verossimilhança para abordar o problema de identificação fraca.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The search for efficiency in supply chains has usually focused on logistic optimization aspects. Initiatives like the ECR are an example. This research questions the appropriateness of this focus comparing detailed cost structures of fifteen consumer products, covering five different product categories. It compares supply chains of private label products, presumably more efficient due to closer collaboration between chain members, to national brands supply chains. The major source of cost differences lies in other indirect costs incurred by the national brands and not directly assignable to advertising. Results indicate that a complete reconception of the supply chain, exploring different governance structures offers greater opportunities for cost savings than the logistic aspect in isolation. Research was done in the UK in 1995-1997, but results are only now publishable due to confidentiality agreements

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper describes a novel neural model to electrical load forecasting in transformers. The network acts as identifier of structural features to forecast process. So that output parameters can be estimated and generalized from an input parameter set. The model was trained and assessed through load data extracted from a Brazilian Electric Utility taking into account time, current, tension, active power in the three phases of the system. The results obtained in the simulations show that the developed technique can be used as an alternative tool to become more appropriate for planning of electric power systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we present nonlinear models in two-dimensional space-time of two interacting scalar fields in the Lorentz and CPT violating scenarios. We discuss the soliton solutions for these models as well as the question of stability for them. This is done by generalizing a model recently published by Barreto and collaborators and also by getting new solutions for the model introduced by them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The existence of an interpolating master action does not guarantee the same spectrum for the interpolated dual theories. In the specific case of a generalized self-dual (GSD) model defined as the addition of the Maxwell term to the self-dual model in D = 2 + 1, previous master actions have furnished a dual gauge theory which is either nonlocal or contains a ghost mode. Here we show that by reducing the Maxwell term to first order by means of an auxiliary field we are able to define a master action which interpolates between the GSD model and a couple of non-interacting Maxwell-Chern-Simons theories of opposite helicities. The presence of an auxiliary field explains the doubling of fields in the dual gauge theory. A generalized duality transformation is defined and both models can be interpreted as self-dual models. Furthermore, it is shown how to obtain the gauge invariant correlators of the non-interacting MCS theories from the correlators of the self-dual field in the GSD model and vice-versa. The derivation of the non-interacting MCS theories from the GSD model, as presented here, works in the opposite direction of the soldering approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)