876 resultados para Gallium Indium Nitride Arsenide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper derives a general procedure for the numerical solution of the Lindblad equations that govern the coherences arising from multicoloured light interacting with a multilevel system. A systematic approach to finding the conservative and dissipative terms is derived and applied to the laser cooling of p-block elements. An improved numerical method is developed to solve the time-dependent master equation and results are presented for transient cooling processes. The method is significantly more robust, efficient and accurate than the standard method and can be applied to a broad range of atomic and molecular systems. Radiation pressure forces and the formation of dynamic dark states are studied in the gallium isotope 66Ga.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The field of surface polariton physics really took off with the prism coupling techniques developed by Kretschmann and Raether, and by Otto. This article reports on the construction and operation of a rotatable, in vacuo, variable temperature, Otto coupler with a coupling gap that can be varied by remote control. The specific design attributes of the system offer additional advantages to those of standard Otto systems of (i) temperature variation (ambient to 85 K), and (ii) the use of a valuable, additional reference point, namely the gap-independent reflectance at the Brewster angle at any given, fixed temperature. The instrument is placed firmly in a historical context of developments in the field. The efficacy of the coupler is demonstrated by sample attenuated total reflectance results on films of platinum, niobium, and yttrium barium copper oxide and on aluminum/gallium arsenide (Al/GaAs) Schottky diode structures. (C) 2000 American Institute of Physics. [S0034-6748(00)02411-4].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two nitride-strengthened reduced activation ferritic/martensitic (RAFM) steels with different Mn contents were investigated. The experimental steels were designed based on the chemical composition of Eurofer 97 steel but the C content was reduced to an extremely low level. Microstructure observation and hardness tests showed that the steel with low Mn content (0.47 wt.%) could not obtain a full martensitic microstructure due to the inevitable δ-ferrite independent of cooling rate after soaking. This steel showed similar room temperature strength and higher strength at 600 °C, but lower impact toughness, compared with Eurofer 97 steel. Fractography of the Charpy impact specimen revealed that the low room temperature toughness should be related to the Ta-rich inclusions initiating the cleavage fracture. The larger amount of V-rich nitrides and more dissolved Cr in the matrix could be responsible for the strength being similar to Eurofer 97 steel. In the second steel developed from the first steel by increasing the Mn content from 0.47 wt.% to 3.73 wt.%, a microstructure of full martensite could be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In constant, search for micro/mesoporous materials, gallium phosphates, have attracted continued interest due to the large pore size reported for some of these solids in comparison with analogous aluminum phosphates. However up to now, the porosity of gallium phosphates collapsed upon template removal or exposure to the ambient moisture. In the present work, we describe high-surface thermally stable mesoporous gallium phosphates synthesized from gallium propoxide and PCl3 and different templating agents such as amines (dipropylamine, piperidine and aminopiperidine) and quaternary ammonium salts (C16H33(CH3)3NBr and C16PyCl). These highly reactive precursors have so far not been used as gallium and phosphate sources for the synthesis of gallophosphates. Conceptually, our present synthetic procedure is based on the fast formation of gallium phosphate nanoparticles via the reaction of gallium propoxide with PCl3 and subsequent construction of the porous material with nanoparticles as building blocks. The organization of the gallophosphate nanoparticles in stable porous structures is effected by the templates. Different experimental procedures varying the molar composition of the sol-gel, pH and the pretreatment of gallium precursor were assayed, most of them leading to satisfactory materials in terms of thermal stability and porosity. In this way, a series of gallium phosphates with surface are above 200 m(2) g(-1), and narrow pore size from 3 to 6 nm and remarkable thermal stability (up to 550 degrees C) have been prepared. In some cases, the structure tends to show some periodicity and regularity as determined by XRD. The remarkable stability has allowed us to test the catalytic activity of gallophosphates for the aerobic oxidation of alkylaromatics with notable good results. Our report reopens the interest for gallophosphates in heterogeneous catalysis. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rectangular waveguide-to-microstrip transition operating at G-band is presented. The E-plane probe, used in the transition, is fabricated on semi-insulating gallium arsenide (SI-GaAs) and it is elevated on the substrate. This configuration reduces interaction with semiconductor material. The elevated probe is suitable for direct integration with monolithic microwave integrated circuits. Measured results show S11 better than 210dB between 150 and 200 GHz and S21 ¼ 2 4dB at centre band (180GHz) for two transitions in back-to-back configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gutmann Acceptor Number (AN), which is a quantitative measure of Lewis acidity, has been estimated using the P-31 NMR chemical shift of a probe molecule, triethylphosphine oxide, for a range of chlorometallate(III) ionic liquids, based on Group 13 metals (aluminium(III), gallium(III) and indium(III)) and the 1-octyl-3-methylimidazolium cation, at different compositions. The results were interpreted in terms of extant speciation studies of chlorometallate(III) ionic liquids, and compared with a range of standard molecular solvents and acids. The value of these data were illustrated in terms of the selection of appropriate ionic liquids for specific applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic band structure of vacuum cleaved single-crystal indium selenide has been investigated by X-ray and ultraviolet photoelectron spectroscopy. The valence band consists of three well separated groups, one derived from the Se 4s levels, and two derived from p-like wavefunctions. The band structure and valence band density of states has been calculated using a tight-binding single-layer approximation and all the major features in the experimental spectra are well accounted for. The spin-orbit splitting and electron loss structure associated with the In 4d core level is also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoresponse of n-type indium-doped ZnO and a p-type polymer (PEDOT:PSS) heterojunction devices are studied, juxtaposed with the photoluminescence of the In-ZnO samples. In addition to the expected photoresponse in the ultraviolet, the heterojunctions exhibit significant photoresponse to the visible (532 nm). However, neither the doped ZnO nor PEDOT: PSS individually show any photoresponse to visible light. The sub-bandgap photoresponse of the heterojunction originates from visible photon mediated e-h generation between the In-ZnO valence band and localized states lying within the band gap. Though increased doping of In-ZnO has limited effect on the photoluminescence, it significantly diminishes the photoresponse. The study indicates that optimally doped devices are promising for the detection of wavelengths in selected windows in the visible. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704655]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcrystalline indium(III) selenide was prepared from a diphenyl diselenide precursor and a range of chloroindate(III) ionic liquids via a microwave-assisted ionothermal route; this is the first report on the use of either microwave irradiation or ionic liquids to prepare this material. The influence of the reaction temperature, dilution with a spectator ionic liquid and variation of the cation and the anion of the ionic liquid on the product morphology and composition were investigated. This resulted in a time-efficient and facile one-pot reaction to produce microcrystalline indium(III) selenide. The product formation in the ionic liquids has been monitored using Raman spectroscopy. The products have been characterised using PXRD, SEM and EDX. Advantages of this new route, such as the ease of solubilisation of all reactants into one phase at high concentration, the negligible vapour pressure irrespective of the reaction temperature, very fast reaction times, ease of potential scale-up and reproducibility are discussed.