892 resultados para GIS, GPS, buffer analysis, spatial analysis, correlation analysis, air pollution, vehicular pollution
Resumo:
Land-based pollution is commonly identified as a major contributor to the observed deterioration of shallow-water coral reef ecosystem health. Human activity on the coastal landscape often induces nutrient enrichment, hypoxia, harmful algal blooms, toxic contamination and other stressors that have degraded the quality of coastal waters. Coral reef ecosystems throughout Puerto Rico, including Jobos Bay, are under threat from coastal land uses such as urban development, industry and agriculture. The objectives of this report were two-fold: 1. To identify potentially harmful land use activities to the benthic habitats of Jobos Bay, and 2. To describe a monitoring plan for Jobos Bay designed to assess the impacts of conservation practices implemented on the watershed. This characterization is a component of the partnership between the U.S. Department of Agriculture (USDA) and the National Oceanic and Atmospheric Administration (NOAA) established by the Conservation Effects Assessment Project (CEAP) in Jobos Bay. CEAP is a multi-agency effort to quantify the environmental benefits of conservation practices used by private landowners participating in USDA programs. The Jobos Bay watershed, located in southeastern Puerto Rico, was selected as the first tropical CEAP Special Emphasis Watershed (SEW). Both USDA and NOAA use their respective expertise in terrestrial and marine environments to model and monitor Jobos Bay resources. This report documents NOAA activities conducted in the first year of the three-year CEAP effort in Jobos Bay. Chapter 1 provides a brief overview of the project and background information on Jobos Bay and its watershed. Chapter 2 implements NOAA’s Summit to Sea approach to summarize the existing resource conditions on the watershed and in the estuary. Summit to Sea uses a GIS-based procedure that links patterns of land use in coastal watersheds to sediment and pollutant loading predictions at the interface between terrestrial and marine environments. The outcome of Summit to Sea analysis is an inventory of coastal land use and predicted pollution threats, consisting of spatial data and descriptive statistics, which allows for better management of coral reef ecosystems. Chapters 3 and 4 describe the monitoring plan to assess the ecological response to conservation practices established by USDA on the watershed. Jobos Bay is the second largest estuary in Puerto Rico, but has more than three times the shoreline of any other estuarine area on the island. It is a natural harbor protected from offshore wind and waves by a series of mangrove islands and the Punta Pozuelo peninsula. The Jobos Bay marine ecosystem includes 48 km² of mangrove, seagrass, coral reef and other habitat types that span both intertidal and subtidal areas. Mapping of Jobos Bay revealed 10 different benthic habitats of varying prevalence, and a large area of unknown bottom type covering 38% of the entire bay. Of the known benthic habitats, submerged aquatic vegetation, primarily seagrass, is the most common bottom type, covering slightly less than 30% of the bay. Mangroves are the dominant shoreline feature, while coral reefs comprise only 4% of the total benthic habitat. However, coral reefs are some of the most productive habitats found in Jobos Bay, and provide important habitat and nursery grounds for fish and invertebrates of commercial and recreational value.
Resumo:
A 5.35-mu m-thick ZnO film is grown by chemical vapour deposition technique on a sapphire (0001) substrate with a GaN buffer layer. The surface of the ZnO film is smooth and shows many hexagonal features. The full width at half maximum of ZnO (0002) omega-rocking curve is 161 arcsec, corresponding to a high crystal quality of the ZnO film. From the result of x-ray diffraction theta - 2. scanning, the stress status in ZnO film is tensile, which is supported by Raman scattering measurement. The reason of the tensile stress in the ZnO film is analysed in detail. The lattice mismatch and thermal mismatch are excluded and the reason is attributed to the coalescence of grains or islands during the growth of the ZnO film.
Resumo:
In this paper, recent progresses in optical analysis of dislocation-related physical properties in GaN-based epilayers are surveyed with a brief review. The influence of dislocations on both near-band edge emission and yellow luminescence (YL) is examined either in a statistical way as a function of dislocation density or focused on individual dislocation lines with a high spatial resolution. Threading dislocations may introduce non-radiative recombination centers and enhance YL, but their effects are affected by the structural and chemical environment. The minority carrier diffusion length may be dependent on either dislocation density or impurity doping as confirmed by the result of photovoltaic spectra. The in situ optical monitoring of the strain evolution process is employed during GaN heteroepitaxy using an AIN interlayer. A typical transition of strain from compression to tension is observed and its correlation with the reduction and inclination of threading dislocation lines is revealed. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
In order to understand the growth feature of GaN on GaAs (0 0 1) substrates grown by metalorganic chemical vapor deposition (MOCVD), the crystallinity of GaN buffer layers with different thicknesses was investigated by using double crystal X-ray diffraction (DCXRD) measurements. The XRD results showed that the buffer layers consist of predominantly hexagonal GaN (h-GaN) and its content increases with buffer layer thickness. The nominal GaN (111) reflections with chi at 54.74degrees can be detected easily, while (0 0 2) reflections are rather weak. The integrated intensity of reflections from (111) planes is 4-6 times that of (0 0 2) reflections. Possible explanations are presented. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The structural properties for various SiCO isomers in the singlet and triplet states have been investigated using CASSCF methods with a 6-311 +G* basis set and also using three DFT and MP2 with same basis set for those systems except for the linear singlet state. The detailed bonding character is discussed, and the state-state correlations and the isomerization mechanism are also determined. Results indicate that there are four different isomers for each spin state, and for all isomers, the triplet state is more stable than the corresponding singlet state. The most stable is the linear SiCO ((3)Sigma(-)) species and may be refer-red to the ground state. At the CASSCF-MP2(full)/6-311+G* level, the state-state energy separations of the other triplet states relative to the ground state are 43.2 (cyclic), 45.2 (linear SiOC), and 75.6 kcal/mol (linear CSiO), respectively, whereas the triplet-singlet state excitation energies for each configuration are 17.3 (linear SiCO), 2.2 (cyclic SiCO), 10.2 (linear SiOC), and 18.5 kcal/mol (linear CSiO), respectively. SiCo ((3)Sigma(-)) may be classified as silene (carbonylsilene), and its COdelta- moiety possesses CO- property. The dissociation energy of the ground state is 42.5 kcal/mol at the CASSCF-MP2(full)/6-311+G* level and falls within a range of 36.5-41.5 kcal/mol at DFT level, and of 23.7-28.9 kcal/mol at the wave function-correlated level, whereas the vertical IP is 188.8 kcal/mol at the CASSCF-MP2(full)/6-311+G* level and is very close to the first IP of Si atom. Three linear isomers (SiCO, SiOC, and CSiO) have similar structural bonding character. SiOC may be referred to the iso-carbonyl Si instead of the aether compound, whereas the CSiO isomer may be considered as the combination of C (the analogue of Si) with SiO (the analogue of CO). The bonding is weak for all linear species, and the corresponding potential energy surfaces are flat, and thus these linear molecules are facile. Another important isomer is of cyclic structure, it may be considered as the combination of CO with Si by the side pi bond. This structure has the smallest triplet state-singlet state excitation energy (similar to2.2 kcal/mol); the C-O bonds are longer, and the corresponding vibrational frequencies are significantly smaller than those of the other linear species. This cyclic species is not classified as an epoxy compound. State-state correlation analysis and the isomerization pathway searches have indicated that there are no direct correlations among three linear structures for each spin state, but they may interchange by experiencing two transition states and one cyclic intermediate. The easiest pathway is to break the Si-O bond to go to the linear SiCO, but its inverse process is very difficult. The most difficult process is to break the C-O bond and to go to the linear CSiO.
Resumo:
China has witnessed fast urban growth in the recent decade. This study analyzes spatio-temporal characteristics of urban expansion in China using satellite images and regionalization methods. Landsat TM images at three time periods, 1990/1991, 1995/1996, and 1999/2000, are interpreted to get 1:100000 vector land use datasets. The study calculates the urban land percentage and urban land expansion index of every 1 km(2) cell throughout China. The study divides China into 27 urban regions to conceive dynamic patterns of urban land changes. Urban development was achieving momentum in the western region, expanding more noticeably than in the previous five years, and seeing an increased growth percentage. Land use dynamic changes reflect the strong impacts of economic growth environments and macro-urban development policies. The paper helps to distinguish the influences of newly market-oriented forces from traditional administrative controls on China's urban expansion. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Mapping the spatial distribution of contaminants in soils is the basis of pollution evaluation and risk control. Interpolation methods are extensively applied in the mapping processes to estimate the heavy metal concentrations at unsampled sites. The performances of interpolation methods (inverse distance weighting, local polynomial, ordinary kriging and radial basis functions) were assessed and compared using the root mean square error for cross validation. The results indicated that all interpolation methods provided a high prediction accuracy of the mean concentration of soil heavy metals. However, the classic method based on percentages of polluted samples, gave a pollution area 23.54-41.92% larger than that estimated by interpolation methods. The difference in contaminated area estimation among the four methods reached 6.14%. According to the interpolation results, the spatial uncertainty of polluted areas was mainly located in three types of region: (a) the local maxima concentration region surrounded by low concentration (clean) sites, (b) the local minima concentration region surrounded with highly polluted samples; and (c) the boundaries of the contaminated areas. (C) 2010 Elsevier Ltd. All rights reserved.