918 resultados para G520 Systems Design Methodologies
Resumo:
In knowledge technology work, as expressed by the scope of this conference, there are a number of communities, each uncovering new methods, theories, and practices. The Library and Information Science (LIS) community is one such community. This community, through tradition and innovation, theories and practice, organizes knowledge and develops knowledge technologies formed by iterative research hewn to the values of equal access and discovery for all. The Information Modeling community is another contributor to knowledge technologies. It concerns itself with the construction of symbolic models that capture the meaning of information and organize it in ways that are computer-based, but human understandable. A recent paper that examines certain assumptions in information modeling builds a bridge between these two communities, offering a forum for a discussion on common aims from a common perspective. In a June 2000 article, Parsons and Wand separate classes from instances in information modeling in order to free instances from what they call the “tyranny” of classes. They attribute a number of problems in information modeling to inherent classification – or the disregard for the fact that instances can be conceptualized independent of any class assignment. By faceting instances from classes, Parsons and Wand strike a sonorous chord with classification theory as understood in LIS. In the practice community and in the publications of LIS, faceted classification has shifted the paradigm of knowledge organization theory in the twentieth century. Here, with the proposal of inherent classification and the resulting layered information modeling, a clear line joins both the LIS classification theory community and the information modeling community. Both communities have their eyes turned toward networked resource discovery, and with this conceptual conjunction a new paradigmatic conversation can take place. Parsons and Wand propose that the layered information model can facilitate schema integration, schema evolution, and interoperability. These three spheres in information modeling have their own connotation, but are not distant from the aims of classification research in LIS. In this new conceptual conjunction, established by Parsons and Ward, information modeling through the layered information model, can expand the horizons of classification theory beyond LIS, promoting a cross-fertilization of ideas on the interoperability of subject access tools like classification schemes, thesauri, taxonomies, and ontologies. This paper examines the common ground between the layered information model and faceted classification, establishing a vocabulary and outlining some common principles. It then turns to the issue of schema and the horizons of conventional classification and the differences between Information Modeling and Library and Information Science. Finally, a framework is proposed that deploys an interpretation of the layered information modeling approach in a knowledge technologies context. In order to design subject access systems that will integrate, evolve and interoperate in a networked environment, knowledge organization specialists must consider a semantic class independence like Parsons and Wand propose for information modeling.
Resumo:
Against a backdrop of rapidly increasing worldwide population and growing energy demand, the development of renewable energy technologies has become of primary importance in the effort to reduce greenhouse gas emissions. However, it is often technically and economically infeasible to transport discontinuous renewable electricity for long distances to the shore. Another shortcoming of non-programmable renewable power is its integration into the onshore grid without affecting the dispatching process. On the other hand, the offshore oil & gas industry is striving to reduce overall carbon footprint from onsite power generators and limiting large expenses associated to carrying electricity from remote offshore facilities. Furthermore, the increased complexity and expansion towards challenging areas of offshore hydrocarbons operations call for higher attention to safety and environmental protection issues from major accident hazards. Innovative hybrid energy systems, as Power-to-Gas (P2G), Power-to-Liquid (P2L) and Gas-to-Power (G2P) options, implemented at offshore locations, would offer the opportunity to overcome challenges of both renewable and oil & gas sectors. This study aims at the development of systematic methodologies based on proper sustainability and safety performance indicators supporting the choice of P2G, P2L and G2P hybrid energy options for offshore green projects in early design phases. An in-depth analysis of the different offshore hybrid strategies was performed. The literature reviews on existing methods proposing metrics to assess sustainability of hybrid energy systems, inherent safety of process routes in conceptual design stage and environmental protection of installations from oil and chemical accidental spills were carried out. To fill the gaps, a suite of specific decision-making methodologies was developed, based on representative multi-criteria indicators addressing technical, economic, environmental and societal aspects of alternative options. A set of five case-studies was defined, covering different offshore scenarios of concern, to provide an assessment of the effectiveness and value of the developed tools.
Resumo:
In the digital age, e-health technologies play a pivotal role in the processing of medical information. As personal health data represents sensitive information concerning a data subject, enhancing data protection and security of systems and practices has become a primary concern. In recent years, there has been an increasing interest in the concept of Privacy by Design, which aims at developing a product or a service in a way that it supports privacy principles and rules. In the EU, Article 25 of the General Data Protection Regulation provides a binding obligation of implementing Data Protection by Design technical and organisational measures. This thesis explores how an e-health system could be developed and how data processing activities could be carried out to apply data protection principles and requirements from the design stage. The research attempts to bridge the gap between the legal and technical disciplines on DPbD by providing a set of guidelines for the implementation of the principle. The work is based on literature review, legal and comparative analysis, and investigation of the existing technical solutions and engineering methodologies. The work can be differentiated by theoretical and applied perspectives. First, it critically conducts a legal analysis on the principle of PbD and it studies the DPbD legal obligation and the related provisions. Later, the research contextualises the rule in the health care field by investigating the applicable legal framework for personal health data processing. Moreover, the research focuses on the US legal system by conducting a comparative analysis. Adopting an applied perspective, the research investigates the existing technical methodologies and tools to design data protection and it proposes a set of comprehensive DPbD organisational and technical guidelines for a crucial case study, that is an Electronic Health Record system.
Resumo:
The trend related to the turnover of internal combustion engine vehicles with EVs goes by the name of electrification. The push electrification experienced in the last decade is linked to the still ongoing evolution in power electronics technology for charging systems. This is the reason why an evolution in testing strategies and testing equipment is crucial too. The project this dissertation is based on concerns the investigation of a new EV simulator design. that optimizes the structure of the testing equipment used by the company who commissioned this work. Project requirements can be summarized in the following two points: space occupation reduction and parallel charging implementation. Some components were completely redesigned, and others were substituted with equivalent ones that could perform the same tasks. In this way it was possible to reduce the space occupation of the simulator, as well as to increase the efficiency of the testing device. Moreover, the possibility of conjugating different charging simulations could be investigated by parallelly launching two testing procedures on a unique machine, properly predisposed for supporting the two charging protocols used. On the back of the results achieved in the body of this dissertation, a new design for the EV simulator was proposed. In this way, space reduction was obtained, and space occupation efficiency was improved with the proposed new design. The testing device thus resulted to be way more compact, enabling to gain in safety and productivity, along with a 25% cost reduction. Furthermore, parallel charging was implemented in the proposed new design since the conducted tests clearly showed the feasibility of parallel charging sessions. The results presented in this work can thus be implemented to build the first prototype of the new EV simulator.
Resumo:
Power-to-Gas storage systems have the potential to address grid-stability issues that arise when an increasing share of power is generated from sources that have a highly variable output. Although the proof-of-concept of these has been promising, the behaviour of the processes in off-design conditions is not easily predictable. The primary aim of this PhD project was to evaluate the performance of an original Power-to-Gas system, made up of innovative components. To achieve this, a numerical model has been developed to simulate the characteristics and the behaviour of the several components when the whole system is coupled with a renewable source. The developed model has been applied to a large variety of scenarios, evaluating the performance of the considered process and exploiting a limited amount of experimental data. The model has been then used to compare different Power-to-Gas concepts, in a real scenario of functioning. Several goals have been achieved. In the concept phase, the possibility to thermally integrate the high temperature components has been demonstrated. Then, the parameters that affect the energy performance of a Power-to-Gas system coupled with a renewable source have been identified, providing general recommendations on the design of hybrid systems; these parameters are: 1) the ratio between the storage system size and the renewable generator size; 2) the type of coupled renewable source; 3) the related production profile. Finally, from the results of the comparative analysis, it is highlighted that configurations with a highly oversized renewable source with respect to the storage system show the maximum achievable profit.
Resumo:
Sustainability encompasses the presence of three dimensions that must coexist simultaneously, namely the environmental, social, and economic ones. The economic and social dimensions are gaining the spotlight in recent years, especially within food systems. To assess social and economic impacts, indicators and tools play a fundamental role in contributing to the achievements of sustainability targets, although few of them have deepen the focus on social and economic impacts. Moreover, in a framework of citizen science and bottom-up approach for improving food systems, citizen play a key role in defying their priorities in terms of social and economic interventions. This research expands the knowledge of social and economic sustainability indicators within the food systems for robust policy insights and interventions. This work accomplishes the following objectives: 1) to define social and economic indicators within the supply chain with a stakeholder perspective, 2) to test social and economic sustainability indicators for future food systems engaging young generations. The first objective was accomplished through the development of a systematic literature review of 34 social sustainability tools, based on five food supply chain stages, namely production, processing, wholesale, retail, and consumer considering farmers, workers, consumers, and society as stakeholders. The second objective was achieved by defining and testing new food systems social and economic sustainability indicators through youth engagement for informed and robust policy insights, to provide policymakers suggestions that would incorporate young generations ones. Future food systems scenarios were evaluated by youth through focus groups, whose results were analyzed through NVivo and then through a survey with a wider platform. Conclusion addressed the main areas of policy interventions in terms of social and economic aspects of sustainable food systems youth pointed out as in need of interventions, spanning from food labelling reporting sustainable origins to better access to online food services.
Resumo:
Conventional chromatographic columns are packed with porous beads by the universally employed slurry-packing method. The lack of precise control of the particle size distribution, shape and position inside the column have dramatic effects on the separation efficiency. In the first part the thesis an ordered, three-dimensional, pillar-array structure was designed by a CAD software. Several columns, characterized by different fluid distributors and bed length, were produced by a stereolithographic 3D printer and compared in terms of pressure drop and height equivalent to a theroretical plate (HETP). To prevent the release of unwanted substances and to provide a surface for immobilizing a ligand, pillars were coated with one or more of the following materials: titanium dioxide, nanofibrillated cellulose (NFC) and polystyrene. The external NFC layer was functionalized with Cibacron Blue and the dynamic binding capacity of the column was measured by performing three chromatographic cycles, using bovine serum albumin (BSA) as target molecule. The second part of the thesis deals with Covid-19 pandemic related research activities. In early 2020, due to the pandemic outbreak, surgical face masks became an essential non-pharmaceutical intervention to limit the spread. To address the consequent shortage and to support the reconversion of the Italian industry, in late March 2020 a multidisciplinary group of the University of Bologna created the first Italian laboratory able to perform all the tests required for the evaluation and certification of surgical masks. More than 1200 tests were performed on about 350 prototypes, according to the standard EN 14683:2019. The results were analyzed to define the best material properties and masks composition for the production of masks with excellent efficiency. To optimize the usage of surgical masks and to reduce their environmental burden, the variation of their performance over time of usage were investigated as to determine the maximum lifetime.
Resumo:
Water Distribution Networks (WDNs) play a vital importance rule in communities, ensuring well-being band supporting economic growth and productivity. The need for greater investment requires design choices will impact on the efficiency of management in the coming decades. This thesis proposes an algorithmic approach to address two related problems:(i) identify the fundamental asset of large WDNs in terms of main infrastructure;(ii) sectorize large WDNs into isolated sectors in order to respect the minimum service to be guaranteed to users. Two methodologies have been developed to meet these objectives and subsequently they were integrated to guarantee an overall process which allows to optimize the sectorized configuration of WDN taking into account the needs to integrated in a global vision the two problems (i) and (ii). With regards to the problem (i), the methodology developed introduces the concept of primary network to give an answer with a dual approach, of connecting main nodes of WDN in terms of hydraulic infrastructures (reservoirs, tanks, pumps stations) and identifying hypothetical paths with the minimal energy losses. This primary network thus identified can be used as an initial basis to design the sectors. The sectorization problem (ii) has been faced using optimization techniques by the development of a new dedicated Tabu Search algorithm able to deal with real case studies of WDNs. For this reason, three new large WDNs models have been developed in order to test the capabilities of the algorithm on different and complex real cases. The developed methodology also allows to automatically identify the deficient parts of the primary network and dynamically includes new edges in order to support a sectorized configuration of the WDN. The application of the overall algorithm to the new real case studies and to others from literature has given applicable solutions even in specific complex situations.
Resumo:
Nowadays, technological advancements have brought industry and research towards the automation of various processes. Automation brings a reduction in costs and an improvement in product quality. For this reason, companies are pushing research to investigate new technologies. The agriculture industry has always looked towards automating various processes, from product processing to storage. In the last years, the automation of harvest and cultivation phases also has become attractive, pushed by the advancement of autonomous driving. Nevertheless, ADAS systems are not enough. Merging different technologies will be the solution to obtain total automation of agriculture processes. For example, sensors that estimate products' physical and chemical properties can be used to evaluate the maturation level of fruit. Therefore, the fusion of these technologies has a key role in industrial process automation. In this dissertation, ADAS systems and sensors for precision agriculture will be both treated. Several measurement procedures for characterizing commercial 3D LiDARs will be proposed and tested to cope with the growing need for comparison tools. Axial errors and transversal errors have been investigated. Moreover, a measurement method and setup for evaluating the fog effect on 3D LiDARs will be proposed. Each presented measurement procedure has been tested. The obtained results highlight the versatility and the goodness of the proposed approaches. Regarding the precision agriculture sensors, a measurement approach for the Moisture Content and density estimation of crop directly on the field is presented. The approach regards the employment of a Near Infrared spectrometer jointly with Partial Least Square statistical analysis. The approach and the model will be described together with a first laboratory prototype used to evaluate the NIRS approach. Finally, a prototype for on the field analysis is realized and tested. The test results are promising, evidencing that the proposed approach is suitable for Moisture Content and density estimation.
Resumo:
This Thesis wants to highlight the importance of ad-hoc designed and developed embedded systems in the implementation of intelligent sensor networks. As evidence four areas of application are presented: Precision Agriculture, Bioengineering, Automotive and Structural Health Monitoring. For each field is reported one, or more, smart device design and developing, in addition to on-board elaborations, experimental validation and in field tests. In particular, it is presented the design and development of a fruit meter. In the bioengineering field, three different projects are reported, detailing the architectures implemented and the validation tests conducted. Two prototype realizations of an inner temperature measurement system in electric motors for an automotive application are then discussed. Lastly, the HW/SW design of a Smart Sensor Network is analyzed: the network features on-board data management and processing, integration in an IoT toolchain, Wireless Sensor Network developments and an AI framework for vibration-based structural assessment.
Resumo:
In the frame of inductive power transfer (IPT) systems, arrays of magnetically coupled resonators have received increasing attention as they are cheap and versatile due to their simple structure. They consist of magnetically coupled coils, which resonate with their self-capacitance or lumped capacitive networks. Of great industrial interest are planar resonator arrays used to power a receiver that can be placed at any position above the array. A thorough circuit analysis has been carried out, first starting from traditional two-coil IPT devices. Then, resonator arrays have been introduced, with particular attention to the case of arrays with a receiver. To evaluate the system performance, a circuit model based on original analytical formulas has been developed and experimentally validated. The results of the analysis also led to the definition of a new doubly-fed array configuration with a receiver that can be placed above it at any position. A suitable control strategy aimed at maximising the transmitted power and the efficiency has been also proposed. The study of the array currents has been carried out resorting to the theory of magneto-inductive waves, allowing useful insight to be highlighted. The analysis has been completed with a numerical and experimental study on the magnetic field distribution originating from the array. Furthermore, an application of the resonator array as a position sensor has been investigated. The position of the receiver is estimated through the measurement of the array input impedance, for which an original analytical expression has been also obtained. The application of this sensing technique in an automotive dynamic IPT system has been discussed. The thesis concludes with an evaluation of the possible applications of two-dimensional resonator arrays in IPT systems. These devices can be used to improve system efficiency and transmitted power, as well as for magnetic field shielding.
Resumo:
The objective of the thesis project, developed within the Line Control & Software Engineering team of G.D company, is to analyze and identify the appropriate tool to automate the HW configuration process using Beckhoff technologies by importing data from an ECAD tool. This would save a great deal of time, since the I/O topology created as part of the electrical planning is presently imported manually in the related SW project of the machine. Moreover, a manual import is more error-prone because of human mistake than an automatic configuration tool. First, an introduction about TwinCAT 3, EtherCAT and Automation Interface is provided; then, it is analyzed the official Beckhoff tool, XCAD Interface, and the requirements on the electrical planning to use it: the interface is realized by means of the AutomationML format. Finally, due to some limitations observed, the design and implementation of a company internal tool is performed. Tests and validation of the tool are performed on a sample production line of the company.
Resumo:
One of the major issues for power converters that are connected to the electric grid are the measurement of three phase Conduced Emissions (CE), which are regulated by international and regional standards. CE are composed of two components which are Common Mode (CM) noise and Differential Mode (DM) noise. To achieve compliance with these regulations the Equipment Under Test (EUT) includes filtering and other electromagnetic emission control strategies. The separation of differential mode and common mode noise in Electromagnetic Interference (EMI) analysis is a well-known procedure which is useful especially for the optimization of the EMI filter, to improve the CM or DM attenuation depending on which component of the conducted emissions is predominant, and for the analysis and the understanding of interference phenomena of switched mode power converters. However, separating both components is rarely done during measurements. Therefore, in this thesis an active device for the separation of the CM and DM EMI noise in three phase power electronic systems has been designed and experimentally analysed.
Resumo:
The use of composite resins in dentistry is well accepted for restoring anterior and posterior teeth. Many polishing protocols have been evaluated for their effect on the surface roughness of restorative materials. This study compared the effect of different polishing systems on the surface roughness of microhybrid composites. Thirty-six specimens were prepared for each composite $#91;Charisma® (Heraeus Kulzer), Fill Magic® (Vigodent), TPH Spectrum® (Dentsply), Z100® (3M/ESPE) and Z250® (3M/ESPE)] and submitted to surface treatment with Enhance® and PoGo® (Dentsply) points, sequential Sof-Lex XT® aluminum oxide disks (3M/ESPE), and felt disks (TDV) combined with Excel® diamond polishing paste (TDV). Average surface roughness (Ra) was measured with a mechanical roughness tester. The data were analyzed by two-way ANOVA with repetition of the factorial design and the Tukey-Kramer test (p<0.01). The F-test result for treatments and resins was high (p<0.0001 for both), indicating that the effect of the treatment applied to the specimen surface and the effect of the type of resin on surface roughness was highly significant. Regarding the interaction between polishing system and type of resin used, a p value of 0.0002 was obtained, indicating a statistically significant difference. A Ra of 1.3663 was obtained for the Sof-Lex/TPH Spectrum interaction. In contrast, the Ra for the felt disk+paste/Z250 interactions was 0.1846. In conclusion, Sof-Lex polishing system produced a higher surface roughness on TPH Spectrum resin when compared to the other interactions.