948 resultados para Functional Model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The term "Logic Programming" refers to a variety of computer languages and execution models which are based on the traditional concept of Symbolic Logic. The expressive power of these languages offers promise to be of great assistance in facing the programming challenges of present and future symbolic processing applications in Artificial Intelligence, Knowledge-based systems, and many other areas of computing. The sequential execution speed of logic programs has been greatly improved since the advent of the first interpreters. However, higher inference speeds are still required in order to meet the demands of applications such as those contemplated for next generation computer systems. The execution of logic programs in parallel is currently considered a promising strategy for attaining such inference speeds. Logic Programming in turn appears as a suitable programming paradigm for parallel architectures because of the many opportunities for parallel execution present in the implementation of logic programs. This dissertation presents an efficient parallel execution model for logic programs. The model is described from the source language level down to an "Abstract Machine" level suitable for direct implementation on existing parallel systems or for the design of special purpose parallel architectures. Few assumptions are made at the source language level and therefore the techniques developed and the general Abstract Machine design are applicable to a variety of logic (and also functional) languages. These techniques offer efficient solutions to several areas of parallel Logic Programming implementation previously considered problematic or a source of considerable overhead, such as the detection and handling of variable binding conflicts in AND-Parallelism, the specification of control and management of the execution tree, the treatment of distributed backtracking, and goal scheduling and memory management issues, etc. A parallel Abstract Machine design is offered, specifying data areas, operation, and a suitable instruction set. This design is based on extending to a parallel environment the techniques introduced by the Warren Abstract Machine, which have already made very fast and space efficient sequential systems a reality. Therefore, the model herein presented is capable of retaining sequential execution speed similar to that of high performance sequential systems, while extracting additional gains in speed by efficiently implementing parallel execution. These claims are supported by simulations of the Abstract Machine on sample programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the molecular programs of the generation of human dopaminergic neurons (DAn) from their ventral mesencephalic (VM) precursors is of key importance for basic studies, progress in cell therapy, drug screening and pharmacology in the context of Parkinson's disease. The nature of human DAn precursors in vitro is poorly understood, their properties unstable, and their availability highly limited. Here we present positive evidence that human VM precursors retaining their genuine properties and long-term capacity to generate A9 type Substantia nigra human DAn (hVM1 model cell line) can be propagated in culture. During a one month differentiation, these cells activate all key genes needed to progress from pro-neural and prodopaminergic precursors to mature and functional DAn. For the first time, we demonstrate that gene cascades are correctly activated during differentiation, resulting in the generation of mature DAn. These DAn have morphological and functional properties undistinguishable from those generated by VM primary neuronal cultures. In addition, we have found that the forced expression of Bcl-XL induces an increase in the expression of key developmental genes (MSX1, NGN2), maintenance of PITX3 expression temporal profile, and also enhances genes involved in DAn long-term function, maintenance and survival (EN1, LMX1B, NURR1 and PITX3). As a result, Bcl-XL anticipates and enhances DAn generation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. The ASSERT project de?ned new software engineering methods and tools for the development of critical embedded real-time systems in the space domain. The ASSERT model-driven engineering process was one of the achievements of the project and is based on the concept of property- preserving model transformations. The key element of this process is that non-functional properties of the software system must be preserved during model transformations. Properties preservation is carried out through model transformations compliant with the Ravenscar Pro?le and provides a formal basis to the process. In this way, the so-called Ravenscar Computational Model is central to the whole ASSERT process. This paper describes the work done in the HWSWCO study, whose main objective has been to address the integration of the Hardware/Software co-design phase in the ASSERT process. In order to do that, non-functional properties of the software system must also be preserved during hardware synthesis. Keywords : Ada 2005, Ravenscar pro?le, Hardware/Software co-design, real- time systems, high-integrity systems, ORK

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a tool to perform guided HAZOP studies using a functional modeling framework: D-higraphs. It is a formalism that gathers in a single model structural (ontological) and functional information about the process considered. In this paper it is applied to an industrial case showing that the proposed methodology fits its purposes and fulfills some of the gaps and drawbacks existing in previous reported HAZOP assistant tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A first study in order to construct a simple model of the mammalian retina is reported. The basic elements for this model are Optical Programmable Logic Cells, OPLCs, previously employed as a functional element for Optical Computing. The same type of circuit simulates the five types of neurons present in the retina. Different responses are obtained by modifying either internal or external connections. Two types of behaviors are reported: symmetrical and non-symmetrical with respect to light position. Some other higher functions, as the possibility to differentiate between symmetric and non-symmetric light images, are performed by another simulation of the first layers of the visual cortex. The possibility to apply these models to image processing is reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whole brain resting state connectivity is a promising biomarker that might help to obtain an early diagnosis in many neurological diseases, such as dementia. Inferring resting-state connectivity is often based on correlations, which are sensitive to indirect connections, leading to an inaccurate representation of the real backbone of the network. The precision matrix is a better representation for whole brain connectivity, as it considers only direct connections. The network structure can be estimated using the graphical lasso (GL), which achieves sparsity through l1-regularization on the precision matrix. In this paper, we propose a structural connectivity adaptive version of the GL, where weaker anatomical connections are represented as stronger penalties on the corre- sponding functional connections. We applied beamformer source reconstruction to the resting state MEG record- ings of 81 subjects, where 29 were healthy controls, 22 were single-domain amnestic Mild Cognitive Impaired (MCI), and 30 were multiple-domain amnestic MCI. An atlas-based anatomical parcellation of 66 regions was ob- tained for each subject, and time series were assigned to each of the regions. The fiber densities between the re- gions, obtained with deterministic tractography from diffusion-weighted MRI, were used to define the anatomical connectivity. Precision matrices were obtained with the region specific time series in five different frequency bands. We compared our method with the traditional GL and a functional adaptive version of the GL, in terms of log-likelihood and classification accuracies between the three groups. We conclude that introduc- ing an anatomical prior improves the expressivity of the model and, in most cases, leads to a better classification between groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, the increasing sophistication of embedded multimedia systems and wireless communication technologies has promoted a widespread utilization of video streaming applications. It has been reported in 2013 that youngsters, aged between 13 and 24, spend around 16.7 hours a week watching online video through social media, business websites, and video streaming sites. Video applications have already been blended into people daily life. Traditionally, video streaming research has focused on performance improvement, namely throughput increase and response time reduction. However, most mobile devices are battery-powered, a technology that grows at a much slower pace than either multimedia or hardware developments. Since battery developments cannot satisfy expanding power demand of mobile devices, research interests on video applications technology has attracted more attention to achieve energy-efficient designs. How to efficiently use the limited battery energy budget becomes a major research challenge. In addition, next generation video standards impel to diversification and personalization. Therefore, it is desirable to have mechanisms to implement energy optimizations with greater flexibility and scalability. In this context, the main goal of this dissertation is to find an energy management and optimization mechanism to reduce the energy consumption of video decoders based on the idea of functional-oriented reconfiguration. System battery life is prolonged as the result of a trade-off between energy consumption and video quality. Functional-oriented reconfiguration takes advantage of the similarities among standards to build video decoders reconnecting existing functional units. If a feedback channel from the decoder to the encoder is available, the former can signal the latter changes in either the encoding parameters or the encoding algorithms for energy-saving adaption. The proposed energy optimization and management mechanism is carried out at the decoder end. This mechanism consists of an energy-aware manager, implemented as an additional block of the reconfiguration engine, an energy estimator, integrated into the decoder, and, if available, a feedback channel connected to the encoder end. The energy-aware manager checks the battery level, selects the new decoder description and signals to build a new decoder to the reconfiguration engine. It is worth noting that the analysis of the energy consumption is fundamental for the success of the energy management and optimization mechanism. In this thesis, an energy estimation method driven by platform event monitoring is proposed. In addition, an event filter is suggested to automate the selection of the most appropriate events that affect the energy consumption. At last, a detailed study on the influence of the training data on the model accuracy is presented. The modeling methodology of the energy estimator has been evaluated on different underlying platforms, single-core and multi-core, with different characteristics of workload. All the results show a good accuracy and low on-line computation overhead. The required modifications on the reconfiguration engine to implement the energy-aware manager have been assessed under different scenarios. The results indicate a possibility to lengthen the battery lifetime of the system in two different use-cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Upper limb function impairment is one of the most common sequelae of central nervous system injury, especially in stroke patients and when spinal cord injury produces tetraplegia. Conventional assessment methods cannot provide objective evaluation of patient performance and the tiveness of therapies. The most common assessment tools are based on rating scales, which are inefficient when measuring small changes and can yield subjective bias. In this study, we designed an inertial sensor-based monitoring system composed of five sensors to measure and analyze the complex movements of the upper limbs, which are common in activities of daily living. We developed a kinematic model with nine degrees of freedom to analyze upper limb and head movements in three dimensions. This system was then validated using a commercial optoelectronic system. These findings suggest that an inertial sensor-based motion tracking system can be used in patients who have upper limb impairment through data integration with a virtual reality-based neuroretation system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El tomate (Solanum lycopersicum L.) es considerado uno de los cultivos hortícolas de mayor importancia económica en el territorio Español. Sin embargo, su producción está seriamente afectada por condiciones ambientales adversas como, salinidad, sequía y temperaturas extremas. Para resolver los problemas que se presentan en condiciones de estrés, se han empleado una serie de técnicas culturales que disminuyen sus efectos negativos, siendo de gran interés el desarrollo de variedades tolerantes. En este sentido la obtención y análisis de plantas transgénicas, ha supuesto un avance tecnológico, que ha facilitado el estudio y la evaluación de genes seleccionados en relación con la tolerancia al estrés. Estudios recientes han mostrado que el uso de genes reguladores como factores de transcripción (FTs) es una gran herramienta para obtener nuevas variedades de tomate con mayor tolerancia a estreses abióticos. Las proteínas DOF (DNA binding with One Finger) son una familia de FTs específica de plantas (Yangisawa, 2002), que están involucrados en procesos fisiológicos exclusivos de plantas como: asimilación del nitrógeno y fijación del carbono fotosintético, germinación de semilla, metabolismo secundario y respuesta al fotoperiodo pero su preciso rol en la tolerancia a estrés abiótico se desconoce en gran parte. El trabajo descrito en esta tesis tiene como objetivo estudiar genes reguladores tipo DOF para incrementar la tolerancia a estrés abiotico tanto en especies modelo como en tomate. En el primer capítulo de esta tesis se muestra la caracterización funcional del gen CDF3 de Arabidopsis, así como su papel en la respuesta a estrés abiótico y otros procesos del desarrollo. La expresión del gen AtCDF3 es altamente inducido por sequía, temperaturas extremas, salinidad y tratamientos con ácido abscísico (ABA). La línea de inserción T-DNA cdf3-1 es más sensible al estrés por sequía y bajas temperaturas, mientras que líneas transgénicas de Arabidopsis 35S::AtCDF3 aumentan la tolerancia al estrés por sequía, osmótico y bajas temperaturas en comparación con plantas wild-type (WT). Además, estas plantas presentan un incremento en la tasa fotosintética y apertura estomática. El gen AtCDF3 se localiza en el núcleo y que muestran una unión específica al ADN con diferente afinidad a secuencias diana y presentan diversas capacidades de activación transcripcional en ensayos de protoplastos de Arabidopsis. El dominio C-terminal de AtCDF3 es esencial para esta localización y su capacidad activación, la delección de este dominio reduce la tolerancia a sequía en plantas transgénicas 35S::AtCDF3. Análisis por microarray revelan que el AtCDF3 regula un set de genes involucrados en el metabolismo del carbono y nitrógeno. Nuestros resultados demuestran que el gen AtCDF3 juega un doble papel en la regulación de la respuesta a estrés por sequía y bajas temperaturas y en el control del tiempo de floración. En el segundo capítulo de este trabajo se lleva a cabo la identificación de 34 genes Dof en tomate que se pueden clasificar en base a homología de secuencia en cuatro grupos A-D, similares a los descritos en Arabidopsis. Dentro del grupo D se han identificado cinco genes DOF que presentan características similares a los Cycling Dof Factors (CDFs) de Arabidopsis. Estos genes son considerados ortólogos de Arabidopsis CDF1-5, y han sido nombrados como Solanum lycopersicum CDFs o SlCDFs. Los SlCDF1-5 son proteínas nucleares que muestran una unión específica al ADN con diferente afinidad a secuencias diana y presentan diversas capacidades de activación transcripcional in vivo. Análisis de expresión de los genes SlCDF1-5 muestran diferentes patrones de expresión durante el día y son inducidos de forma diferente en respuesta a estrés osmótico, salino, y de altas y bajas temperaturas. Plantas de Arabidopsis que sobre-expresan SlCDF1 y SlCDF3 muestran un incremento de la tolerancia a la sequía y salinidad. Además, de la expresión de varios genes de respuesta estrés como AtCOR15, AtRD29A y AtERD10, son expresados de forma diferente en estas líneas. La sobre-expresión de SlCDF3 en Arabidopsis promueve un retardo en el tiempo de floración a través de la modulación de la expresión de genes que controlan la floración como CONSTANS (CO) y FLOWERING LOCUS T (FT). En general, nuestros datos demuestran que los SlCDFs están asociados a funciones aun no descritas, relacionadas con la tolerancia a estrés abiótico y el control del tiempo de floración a través de la regulación de genes específicos y a un aumento de metabolitos particulares. ABSTRACT Tomato (Solanum lycopersicum L.) is one of the horticultural crops of major economic importance in the Spanish territory. However, its production is being affected by adverse environmental conditions such as salinity, drought and extreme temperatures. To resolve the problems triggered by stress conditions, a number of agricultural techniques that reduce the negative effects of stress are being frequently applied. However, the development of stress tolerant varieties is of a great interest. In this direction, the technological progress in obtaining and analysis of transgenic plants facilitated the study and evaluation of selected genes in relation to stress tolerance. Recent studies have shown that a use of regulatory genes such as transcription factors (TFs) is a great tool to obtain new tomato varieties with greater tolerance to abiotic stresses. The DOF (DNA binding with One Finger) proteins form a family of plant-specific TFs (Yangisawa, 2002) that are involved in the regulation of particular plant processes such as nitrogen assimilation, photosynthetic carbon fixation, seed germination, secondary metabolism and flowering time bur their precise roles in abiotic stress tolerance are largely unknown. The work described in this thesis aims at the study of the DOF type regulatory genes to increase tolerance to abiotic stress in both model species and the tomato. In the first chapter of this thesis, we present molecular characterization of the Arabidopsis CDF3 gene as well as its role in the response to abiotic stress and in other developmental processes. AtCDF3 is highly induced by drought, extreme temperatures, salt and abscisic acid (ABA) treatments. The cdf3-1 T-DNA insertion mutant was more sensitive to drought and low temperature stresses, whereas the AtCDF3 overexpression enhanced the tolerance of transgenic plants to drought, cold and osmotic stress comparing to the wild-type (WT) plants. In addition, these plants exhibit increased photosynthesis rates and stomatal aperture. AtCDF3 is localized in the nuclear region, displays specific binding to the canonical DNA target sequences and has a transcriptional activation activity in Arabidopsis protoplast assays. In addition, the C-terminal domain of AtCDF3 is essential for its localization and activation capabilities and the deletion of this domain significantly reduces the tolerance to drought in transgenic 35S::AtCDF3 overexpressing plants. Microarray analysis revealed that AtCDF3 regulated a set of genes involved in nitrogen and carbon metabolism. Our results demonstrate that AtCDF3 plays dual roles in regulating plant responses to drought and low temperature stress and in control of flowering time in vegetative tissues. In the second chapter this work, we carried out to identification of 34 tomato DOF genes that were classified by sequence similarity into four groups A-D, similar to the situation in Arabidopsis. In the D group we have identified five DOF genes that show similar characteristics to the Cycling Dof Factors (CDFs) of Arabidopsis. These genes were considered orthologous to the Arabidopsis CDF1 - 5 and were named Solanum lycopersicum CDFs or SlCDFs. SlCDF1-5 are nuclear proteins that display specific binding to canonical DNA target sequences and have transcriptional activation capacities in vivo. Expression analysis of SlCDF1-5 genes showed distinct diurnal expression patterns and were differentially induced in response to osmotic, salt and low and high temperature stresses. Arabidopsis plants overexpressing SlCDF1 and SlCDF3 showed increased drought and salt tolerance. In addition, various stress-responsive genes, such as AtCOR15, AtRD29A and AtERD10, were expressed differently in these lines. The overexpression of SlCDF3 in Arabidopsis also results in the late flowering phenotype through the modulation of the expression of flowering control genes such CONSTANS (CO) and FLOWERING LOCUS T (FT). Overall, our data connet SlCDFs to undescribed functions related to abiotic stress tolerance and flowering time through the regulation of specific target genes and an increase in particular metabolites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pseudomonas savastanoi pv. savastanoi NCPPB 3335 causes olive knot disease and is a model pathogen for exploring bacterial infection of woody hosts. The type III secretion system (T3SS) effector repertoire of this strain includes 31 effector candidates plus two novel candidates identified in this study which have not been reported to translocate into plant cells. In this work, we demonstrate the delivery of seven NCPPB 3335 effectors into Nicotiana tabacum leaves, including three proteins from two novel families of the P. syringae complex effector super-repertoire (HopBK and HopBL), one of which comprises two proteins (HopBL1 and HopBL2) that harbor a SUMO protease domain. When delivered by P. fluorescens heterologously expressing a P. syringae T3SS, all seven effectors were found to suppress the production of defense-associated reactive oxygen species. Moreover, six of these effectors, including the truncated versions of HopAA1 and HopAZ1 encoded by NCPPB 3335, suppressed callose deposition. The expression of HopAZ1 and HopBL1 by functionally effectorless P. syringae pv. tomato DC3000D28E inhibited the hypersensitive response in tobacco and, additionally, expression of HopBL2 by this strain significantly increased its competitiveness in N. benthamiana. DNA sequences encoding HopBL1 and HopBL2 were uniquely detected in a collection of 31 P. savastanoi pv. savastanoi strains and other P. syringae strains isolated from woody hosts, suggesting a relevant role of these two effectors in bacterial interactions with olive and other woody plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traumatic brain injury and spinal cord injury have recently been put under the spotlight as major causes of death and disability in the developed world. Despite the important ongoing experimental and modeling campaigns aimed at understanding the mechanics of tissue and cell damage typically observed in such events, the differentiated roles of strain, stress and their corresponding loading rates on the damage level itself remain unclear. More specifically, the direct relations between brain and spinal cord tissue or cell damage, and electrophysiological functions are still to be unraveled. Whereas mechanical modeling efforts are focusing mainly on stress distribution and mechanistic-based damage criteria, simulated function-based damage criteria are still missing. Here, we propose a new multiscale model of myelinated axon associating electrophysiological impairment to structural damage as a function of strain and strain rate. This multiscale approach provides a new framework for damage evaluation directly relating neuron mechanics and electrophysiological properties, thus providing a link between mechanical trauma and subsequent functional deficits

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This summary presents a methodology for supporting the development of AOSAs following the MDD paradigm. This new methodology is called PRISMA and allows the code generation from models which specify functional and non-functional requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell-based therapy is a promising approach for many diseases, including ischemic heart disease. Cardiac mesoangioblasts are committed vessel-associated progenitors that can restore to a significant, although partial, extent, heart structure and function in a murine model of myocardial infarction. Low-intensity pulsed ultrasound (LIPUS) is a noninvasive form of mechanical energy that can be delivered into biological tissues as acoustic pressure waves, and is widely used for clinical applications including bone fracture healing. We hypothesized that the positive effects of LIPUS on bone and soft tissue, such as increased cell differentiation and cytoskeleton reorganization, could be applied to increase the therapeutic potential of mesoangioblasts for heart repair. In this work, we show that LIPUS stimulation of cardiac mesoangioblasts isolated from mouse and human heart results in significant cellular modifications that provide beneficial effects to the cells, including increased malleability and improved motility. Additionally, LIPUS stimulation increased the number of binucleated cells and induced cardiac differentiation to an extent comparable with 5´-azacytidine treatment. Mechanistically, LIPUS stimulation activated the BMP-Smad signalling pathway and increased the expression of myosin light chain-2 together with upregulation of β1 integrin and RhoA, highlighting a potentially important role for cytoskeleton reorganization. Taken together, these results provide functional evidence that LIPUS might be a useful tool to explore in the field of heart cell therapy

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytokines interact with hematopoietin superfamily receptors and stimulate receptor dimerization. We demonstrate that chemoattractant cytokines (chemokines) also trigger biological responses through receptor dimerization. Functional responses are induced after pairwise crosslinking of chemokine receptors by bivalent agonistic antichemokine receptor mAb, but not by their Fab fragments. Monocyte chemoattractant protein (MCP)-1-triggered receptor dimerization was studied in human embryonic kidney (HEK)-293 cells cotransfected with genes coding for the CCR2b receptor tagged with YSK or Myc sequences. After MCP-1 stimulation, immunoprecipitation with Myc-specific antibodies revealed YSK-tagged receptors in immunoblotting. Receptor dimerization also was validated by chemical crosslinking in both HEK-293 cells and the human monocytic cell line Mono Mac 1. Finally, we constructed a loss-of-function CCR2bY139F mutant that acted as a dominant negative, blocking signaling through the CCR2 wild-type receptor. This study provides functional support for a model in which the MCP-1 receptor is activated by ligand-induced homodimerization, allowing discussion of the similarities between bacterial and leukocyte chemotaxis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For analyzing the mechanism of energy transduction in the “motor” protein, myosin, it is opportune both to model the structural change in the hydrolytic transition, ATP (myosin-bound) + H2O → ADP⋅Pi (myosin-bound) and to check the plausibility of the model by appropriate site-directed mutations in the functional system. Here, we made a series of mutations to investigate the role of the salt-bridge between Glu-470 and Arg-247 (of chicken smooth muscle myosin) that has been inferred from crystallography to be a central feature of the transition [Fisher, A. J., Smith, C. A., Thoden, J. B., Smith, R., Sutoh, K., Holden, H. M., & Rayment, I. (1995) Biochemistry 34, 8960–8972]. Our results suggest that whether in the normal, or in the inverted, direction an intact salt-bridge is necessary for ATP hydrolysis, but when the salt-bridge is in the inverted direction it does not support actin activation. Normally, fluorescence changes result from adding nucleotides to myosin; these signals are reported by Trp-512 (of chicken smooth muscle myosin). Our results also suggest that structural impairments in the 470–247 region interfere with the transmission of these signals to the responsive Trp.