930 resultados para Functional Capacity Evaluation
Resumo:
The four basic helix-loop-helix myogenic transcription factors, myogenin, Myf5, MRF4, and MyoD are critical for embryonic skeletal muscle development. Myogenin is necessary for the terminal differentiation of myoblasts into myofibers during embryogenesis, but little is known about the roles played by myogenin in adult skeletal muscle function and metabolism. Furthermore, while metabolism is a well-studied physiological process, how it is regulated at the transcriptional level remains poorly understood. In this study, my aim was to determine the function of myogenin in adult skeletal muscle metabolism, exercise capacity, and regeneration. To investigate this, I utilized a mouse strain harboring the Myogflox allele and a Cre recombinase transgene, enabling the efficient deletion of myogenin in the adult mouse. Myogflox/flox mice were stressed physically through involuntary treadmill running and by breeding them with a strain harboring the Duchenne’s muscular dystrophy (DMDmdx) allele. Surprisingly, Myog-deleted animals exhibited an enhanced capacity for exercise, running farther and faster than their wild-type counterparts. Increased lactate production and utilization of glucose as a fuel source indicated that Myog-deleted animals exhibited an increased glycolytic flux. Hypoglycemic Myog-deleted mice no longer possessed the ability to outrun their wild-type counterparts, implying the ability of these animals to further deplete their glucose reserves confers their enhanced exercise capacity. Moreover, Myog-deleted mice exhibited an enhanced response to long-term exercise training. The mice developed a greater proportion of type 1 oxidative muscle fibers, and displayed increased levels of succinate dehydrogenase activity, indicative of increased oxidative metabolism. Mdx:Myog-deleted mice exhibited a similar phenotype, outperforming their mdx counterparts, although lagging behind wild-type animals. The morphology of muscle tissue from mdx:Myog-deleted mice appears to mimic that of mdx animals, indicating that myogenin is dispensable for adult skeletal muscle regeneration. Through global gene expression profiling and quantitative (q)RT-PCR, I identified a unique set of putative myogenin-dependent genes involved in regulating metabolic processes. These data suggest myogenin’s functions during adulthood are distinctly different than those during embryogenesis, and myogenin acts as a high-level transcription factor regulating metabolic activity in adult skeletal muscle.
Resumo:
Numerous studies reported a strong link between working memory capacity (WMC) and fluid intelligence (Gf), although views differ in respect to how close these two constructs are related to each other. In the present study, we used a WMC task with five levels of task demands to assess the relationship between WMC and Gf by means of a new methodological approach referred to as fixed-links modeling. Fixed-links models belong to the family of confirmatory factor analysis (CFA) and are of particular interest for experimental, repeated-measures designs. With this technique, processes systematically varying across task conditions can be disentangled from processes unaffected by the experimental manipulation. Proceeding from the assumption that experimental manipulation in a WMC task leads to increasing demands on WMC, the processes systematically varying across task conditions can be assumed to be WMC-specific. Processes not varying across task conditions, on the other hand, are probably independent of WMC. Fixed-links models allow for representing these two kinds of processes by two independent latent variables. In contrast to traditional CFA where a common latent variable is derived from the different task conditions, fixed-links models facilitate a more precise or purified representation of the WMC-related processes of interest. By using fixed-links modeling to analyze data of 200 participants, we identified a non-experimental latent variable, representing processes that remained constant irrespective of the WMC task conditions, and an experimental latent variable which reflected processes that varied as a function of experimental manipulation. This latter variable represents the increasing demands on WMC and, hence, was considered a purified measure of WMC controlled for the constant processes. Fixed-links modeling showed that both the purified measure of WMC (β = .48) as well as the constant processes involved in the task (β = .45) were related to Gf. Taken together, these two latent variables explained the same portion of variance of Gf as a single latent variable obtained by traditional CFA (β = .65) indicating that traditional CFA causes an overestimation of the effective relationship between WMC and Gf. Thus, fixed-links modeling provides a feasible method for a more valid investigation of the functional relationship between specific constructs.
Resumo:
Defining new therapeutic strategies to overcome therapy resistance due to tumor heterogeneity in colon cancer is challenging. One option is to explore the molecular profile of aggressive disseminating tumor cells. The cytoskeleton-associated Death-associated protein kinase (DAPK) is involved in the cross talk between tumor and immune cells at the invasion front of colorectal cancer. Here dedifferentiated tumor cells histologically defined as tumor budding are associated with a high risk of metastasis and poor prognosis. Analyzing samples from 144 colorectal cancer patients we investigated immunhistochemical DAPK expression in different tumor regions such as center, invasion front, and buds. Functional consequences for tumor aggressiveness were studied in a panel of colon tumor cell lines using different migration, wound healing, and invasion assays. DAPK levels were experimentally modified by siRNA transfection and overexpression as well as inhibitor treatments. We found that DAPK expression was reduced towards the invasion front and was nearly absent in tumor buds. Applying the ECIS system with HCT116 and HCT116 stable lentiviral DAPK knock down cells (HCTshDAPK) we identified an important role for DAPK in decreasing the migratory capacity whereas proliferation was not affected. Furthermore, the migration pattern differed with HCTshDAPK cells showing a cluster-like migration of tumor cell groups. DAPK inhibitor treatment revealed that the migration rate was independent of DAPK's catalytic activity. Modulation of DAPK expression level in SW480 and DLD1 colorectal cancer cells significantly influenced wound closure rate. DAPK seems to be a major player that influences the migratory capability of disseminating tumor cells and possibly affects the dynamic interface between pro- and anti-survival factors at the invasion front of colorectal cancer. This interesting and new finding requires further evaluation.
Resumo:
Cerebrovascular accidents (CVA) or strokes are now the third leading cause of death in the United States. Many who suffer strokes are admitted to rehabilitation centers in order to receive therapy to help rebuild and recovery function. Nutrition plays a significant role in rehabilitation patient outcomes, and is an essential part of comprehensive care. The purpose of this study is to determine if nutrition and diet consistency are directly and independently associated with changes in the Functional Independence Measure (FIM) scores in stroke patients in an acute rehabilitation unit. This study was a retrospective secondary analysis review of medical chart records, and included a total of 84 patients. Patients were divided into groups based on their admission diet: Regular, Dysphagia Advanced, Dysphagia Mechanically Altered, Dysphagia Pureed, and Nutrition Support. Measurements included admission and discharge Total, Motor, and Cognitive FIM scores; BMI, albumin and prealbumin; age, sex, and race. Patients did show a significant improvement in their FIM scores during their stay, with patients on Regular diets having the highest FIM scores. Patients who were more debilitated and had lower FIM scores were usually in one of the altered texture diet groups, or on nutrition support. Prealbumin and BMI were also the highest in patients who had high FIM scores. Patients who were admitted on an altered diet also tended to advance in their diets, which show improvement in overall function. It is crucial to continue to improve nutrition administration to this population to help prevent morbidity and mortality. Proper nutrition in the acute phase of stroke can lay the essential groundwork for recovery.^
Resumo:
The International FusionMaterials Irradiation Facility (IFMIF) is a future neutron source based on the D-Li stripping reaction, planned to test candidate fusionmaterials at relevant fusion irradiation conditions. During the design of IFMIF special attention was paid to the structural materials for the blanket and first wall, because they will be exposed to the most severe irradiation conditions in a fusion reactor. Also the irradiation of candidate materials for solid breeder blankets is planned in the IFMIF reference design. This paper focuses on the assessment of the suitability of IFMIF irradiation conditions for testing functionalmaterials to be used in liquid blankets and diagnostics systems, since they are been also considered within IFMIF objectives. The study has been based on the analysis and comparison of the main expected irradiation parameters in IFMIF and DEMO reactor.
Resumo:
Nondeterminism and partially instantiated data structures give logic programming expressive power beyond that of functional programming. However, functional programming often provides convenient syntactic features, such as having a designated implicit output argument, which allow function cali nesting and sometimes results in more compact code. Functional programming also sometimes allows a more direct encoding of lazy evaluation, with its ability to deal with infinite data structures. We present a syntactic functional extensión, used in the Ciao system, which can be implemented in ISO-standard Prolog systems and covers function application, predefined evaluable functors, functional definitions, quoting, and lazy evaluation. The extensión is also composable with higher-order features and can be combined with other extensions to ISO-Prolog such as constraints. We also highlight the features of the Ciao system which help implementation and present some data on the overhead of using lazy evaluation with respect to eager evaluation.
Resumo:
Certain aspects of functional programming provide syntactic convenience, such as having a designated implicit output argument, which allows function cali nesting and sometimes results in more compact code. Functional programming also sometimes allows a more direct encoding of lazy evaluation, with its ability to deal with infinite data structures. We present a syntactic functional extensión of Prolog covering function application, predefined evaluable functors, functional definitions, quoting, and lazy evaluation. The extensión is also composable with higher-order features. We also highlight the Ciao features which help implementation and present some data on the overhead of using lazy evaluation with respect to eager evaluation.
Resumo:
Upper limb function impairment is one of the most common sequelae of central nervous system injury, especially in stroke patients and when spinal cord injury produces tetraplegia. Conventional assessment methods cannot provide objective evaluation of patient performance and the tiveness of therapies. The most common assessment tools are based on rating scales, which are inefficient when measuring small changes and can yield subjective bias. In this study, we designed an inertial sensor-based monitoring system composed of five sensors to measure and analyze the complex movements of the upper limbs, which are common in activities of daily living. We developed a kinematic model with nine degrees of freedom to analyze upper limb and head movements in three dimensions. This system was then validated using a commercial optoelectronic system. These findings suggest that an inertial sensor-based motion tracking system can be used in patients who have upper limb impairment through data integration with a virtual reality-based neuroretation system.
Resumo:
Three-dimensional kinematic analysis provides quantitative assessment of upper limb motion and is used as an outcome measure to evaluate movement disorders. The aim of the present study is to present a set of kinematic metrics for quantifying characteristics of movement performance and the functional status of the subject during the execution of the activity of daily living (ADL) of drinking from a glass. Then, the objective is to apply these metrics in healthy people and a population with cervical spinal cord injury (SCI), and to analyze the metrics ability to discriminate between healthy and pathologic people. 19 people participated in the study: 7 subjects with metameric level C6 tetraplegia, 4 subjects with metameric level C7 tetraplegia and 8 healthy subjects. The movement was recorded with a photogrammetry system. The ADL of drinking was divided into a series of clearly identifiable phases to facilitate analysis. Metrics describing the time of the reaching phase, the range of motion of the joints analyzed, and characteristics of movement performance such as the efficiency, accuracy and smoothness of the distal segment and inter-joint coordination were obtained. The performance of the drinking task was more variable in people with SCI compared to the control group in relation to the metrics measured. Reaching time was longer in SCI groups. The proposed metrics showed capability to discriminate between healthy and pathologic people. Relative deficits in efficiency were larger in SCI people than in controls. These metrics can provide useful information in a clinical setting about the quality of the movement performed by healthy and SCI people during functional activities.
Resumo:
In Canada, increases in rural development has led to a growing need to effectively manage the resulting municipal and city sewage without the addition of significant cost- and energy- expending infrastructure. Storring Septic Service Limited is a family-owned, licensed wastewater treatment facility located in eastern Ontario. It makes use of a passive waste stabilization pond system to treat and dispose of waste and wastewater in an environmentally responsible manner. Storring Septic, like many other similar small-scale wastewater treatment facilities across Canada, has the potential to act as a sustainable eco-engineered facility that municipalities and service providers could utilize to manage and dispose of their wastewater. However, it is of concern that the substantial inclusion of third party material could be detrimental to the stability and robustness of the pond system. In order to augment the capacity of the current facility, and ensure it remains a self-sustaining system with the capacity to safely accept septage from other sewage haulers, it was hypothesized that pond effluent treatment could be further enhanced through the incorporation of one of three different technology solutions, which would allow the reduction of wastewater quality parameters below existing regulatory effluent discharge limits put in place by Ontario’s Ministry of the Environment and Climate Change (MOECC). Two of these solutions make use of biofilm technologies in order to enhance the removal of wastewater parameters of interest, and the third utilizes the natural water filtration capabilities of zebra mussels. Pilot-scale testing investigated the effects of each of these technologies on treatment performance under both cold and warm weather operation. This research aimed to understand the important mechanisms behind biological filtration methods in order to choose and optimize the best treatment strategy for full-scale testing and implementation. In doing so, a recommendation matrix was elaborated provided with the potential to be used as a universal operational strategy for wastewater treatment facilities located in environments of similar climate and ecology.
Resumo:
Mode of access: Internet.
Resumo:
Cover title.
Resumo:
It is unclear whether a random plasma cortisol measurement and the corticotropin (ACTH) test adequately reflect glucocorticoid secretory capacity in critical illness. This study aimed to determine whether these tests provide information representative of the 24 hour period. Plasma cortisol was measured hourly for 24 hours in 21 critically ill septic patients followed by a corticotropin test with 1 μ g dose administered intravenously. Serum and urine were analysed for ACTH and free cortisol respectively. Marked hourly variability in plasma cortisol was evident (coefficient of variation 8-30%) with no demonstrable circadian rhythm. The individual mean plasma cortisol concentrations ranged from 286 59 nmol/l to 796 &PLUSMN; 83 nmol/l. The 24 hour mean plasma cortisol was strongly correlated with both random plasma cortisol (r(2) 0.9, P< 0.0001) and the cortisol response to corticotropin (r(2) 0.72, P< 0.001). Only nine percent of patients increased their plasma cortisol by 250 nmol/l after corticotropin (euadrenal response). However, 35% of non-responders had spontaneous hourly rises > 250 nmol/l thus highlighting the limitations of a single point corticotropin test. Urinary free cortisol was elevated (865&PLUSMN; 937 nmol) in both corticotropin responders and non-responders suggesting elevated plasma free cortisol. No significant relationship was demonstrable between plasma cortisol and ACTH. We conclude that although random cortisol measurements and the low dose corticotropin tests reliably reflect the 24 hour mean cortisol in critical illness, they do not take into account the pulsatile nature of cortisol secretion. Consequently, there is the potential for erroneous conclusions about adrenal function based on a single measurement. We suggest that caution be exercised when drawing conclusions on the adequacy of adrenal function based on a single random plasma cortisol or the corticotropin test.