910 resultados para Fuels.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The heat capacities (C-p) of three types of gasohol (which consisted of 20 wt % ethanol and 80 wt % unleaded gasoline 93(#) (system S1), 30 wt % ethanol and 70 wt % unleaded gasoline 931 (system S2), 40 wt % ethanol and 60 wt % unleaded gasoline 930 (system S3), where "93(#)" denotes the octane number) were measured by adiabatic calorimetry in the temperature range of 80320 K. A glass transition was observed at 94.24, 95.15, and 95.44 K for system S1, S2, and S3, respectively. A solid-solid phase transition and solid-liquid phase transition were observed at 135.18 and 151.30 K for system S1, 131.82 and 152.10 K for system S2, and 121.29 and 155.09 K for S3, respectively. The polynomial equations for C, with respect to the thermodynamic temperature (T), and with respect to the content of ethanol (x), were established through the least-squares fitting. The thermodynamic functions and the excess thermodynamic functions of the three samples were derived using these thermodynamic relationships and equations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hydroconversion of n-paraffins is a key reaction in hydrodewaxing of lubricating base oil. In this paper, we investigate the performance of Pt/SAPO-11 catalysts for isomerization of n-paraffins by the model compound of n-dodecane. Under this experimental condition, yields of feed isomers as well as cracking products are a function of the total n-dodecane conversion. Primary products are methylundecane while multi-brancheds and cracking products are formed in successive reactions. The result shows that the addition of Sn increases the selectivity for isomerization reaction. The most ideal experimental data for hydroconversion of n-dodecane is that the selectivity of isomerized products gets 90% when conversion of n-dodecane is 90% for the Sn-promoted Pt/SAPO-11 catalyst.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direct conversion of methane into hydrogen and valuable chemicals under nonoxidative conditions is a process severely limited thermodynamically. However, the movement from the present era of fossil fuels into the coming hydrogen energy age makes it an interesting and important approach compared with the direct conversion of methane under the aid of oxidants. This paper gives a brief overview of the direct conversion of CH4 under nonoxidative conditions. At the same time, our understanding of methane dehydroaromatization over Mo/HZSM-5 catalysts for the simultaneous formation of hydrogen and light aromatics is discussed in general, while the bifunctionality of Mo/HZSM-5 catalysts and the role of carbonaceous deposits formed during the reaction are reviewed in more detail. A perspective of the topic from both academic points of view and potential industrial applications is also presented. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current concern about an anthropogenic impact on global climate has made it of interest to compare the potential effect of various human activities. A case in point is the comparison between the emission of greenhouse gases from the use of natural gas and that from other fossil fuels. This comparison requires an evaluation of the effect of methane emissions relative to that of carbon dioxide emissions. A rough analysis based on the use of currently accepted values shows that natural gas is preferable to other fossil fuels in consideration of the greenhouse effect as long as its leakage can be limited to 3 to 6 percent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The membraneless biofuel cell (BFC) is facile prepared based on glucose oxidase and laccase as anodic and cathodic catalyst, respectively, by using 1,1'-dicarboxyferrocene as the mediators of both anode and cathode. The BFC can work by taking glucose as fuel in air-saturated solution, in which air serves as the oxidizer of the cathode. More interestingly, the fruit juice containing glucose, e.g. grape, banana or orange juice as the fuels substituting for glucose can make the BFC work. The BFC shows several advantages which have not been reported to our knowledge: (1) it is membraneless BFC which can work with same mediator on both anode and cathode; (2) fruit juice can act as fuels of BFCs substituting for usually used glucose; (3) especially, the orange juice can greatly enhance the power output rather than that of glucose, grape or banana juice. Besides, the facile and simple preparation procedure and easy accessibility of fruit juice as well as air being whenever and everywhere imply that our system has promising potential for the development and practical application of BFCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine the effects of pretreatment on hydrogen production and the hydrogen-producing microbial community, we treated the sludge from the intertidal zone of a bathing beach in Tianjin with four different pretreatment methods, including acid treatment, heat-shock, base treatment as well as freezing and thawing. The results showed that acid pretreatment significantly promoted the hydrogen production by sludge and provided the highest efficiency of hydrogen production among the four methods. The efficiency of the hydrogen production of the acid-pretreated sludge was 0.86 +/- 0.07 mol H-2/mol glucose (mean +/- S.E.), whereas that of the sludge treated with heat-shock, freezing and thawing, base method and control was 0.41 +/- 0.03 mol H-2/mol glucose, 0.17 +/- 0.01 mol H-2/mol glucose, 0.11 +/- 0.01 mol H-2/mol glucose and 0.20 +/- 0.04 mol H-2/mol glucose, respectively. The result of denaturing gradient gel electrophoresis (DGGE) showed that pretreatment methods altered the composition of the microbial community that accounts for hydrogen production. Acid and heat pretreatments were favorable to enrich the dominant hydrogen-producing bacterium, i.e. Clostridium sp., Enterococcus sp. and Bacillus sp., However, besides hydrogen-producing bacteria, much non-hydrogen-producing Lactobacillus sp. was also found in the sludge pretreated with base, freezing and thawing methods. Therefore, based on our results, we concluded that, among the four pretreatment methods using acid, heat-shock, base or freezing and thawing, acid pretreatment was the most effective method for promoting hydrogen production of microbial community. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcareous algae such as Corallina pilulifera a Postels et Ruprecht can be one of the most potential candidates to be used in biological carbon dioxide assimilation to reduce greenhouse effect because of its calcification capacity as well as photosynthesis if utilized extensively and properly. The major elemental composition in C. pilulifera is as follows: sodium 0.13%, chloride 1.75%, magnesium 4.37%, calcium 18.4%, iron 0.31%, and carbonate 28.5%. Calcareous algae can be used as elemental provider for livestock or agriculture. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The economic feasibility of algal mass culture for biodiesel production is enhanced by the increase in biomass productivity and storage lipids. Effect of iron on growth and lipid accumulation in marine microalgae Chlorella vulgaris were investigated. In experiment I, supplementing the growth media with chelated FeCl3 in the late growth phase increased the final cell density but did not induce lipid accumulation in cells. In experiment II, cells in the late-exponential growth phase were collected by centrifugation and re-inoculated into new media supplemented with five levels of Fe3+ concentration. Total lipid content in cultures supplemented with 1.2 x 10(-5) mol L-1 FeCl3 was up to 56.6% biomass by dry weight and was 3-7-fold that in other media supplemented with lower iron concentration. Moreover, a simple and rapid method determining the lipid accumulation in C. vulgaris with spectrofluorimetry was developed. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chitosanase production was markedly enhanced by substrate induction, statistical optimization of medium composition and culture conditions by Microbacteritan sp. OU01 in shake-flask. A significant influence of (NH4)(2)SO4, MgSO4 center dot 7H(2)O and initial pH on chitosanase production was noted with Plackett-Burman design. It was then revealed with the method of steepest ascent and response surface methodology (RSM) that 19.0 g/L (NH4)(2)SO4, 1.3 g/L MgSO4 and an initial pH of 2.0 were optimum for the production of chitosanase; colloidal chitosan appeared to be the best inducer for chitosanase production by Microbacterium sp. OU01. This optimization strategy led to the enhancement of chitosanase from 3.6 U/mL to 118 U/mL. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new fermentative hydrogen-producing bacterium was isolated from mangrove sludge and identified as Pantoea agglomerans using light microscopic examination, Biolog test and 16S rRNA gene sequence analysis. The isolated bacterium, designated as P. agglomerans BH-18, is a new strain that has never been optimized as a potential hydrogen-producing bacterium. In this study, the culture conditions and the hydrogen-producing ability of P. agglomerans BH-18 were examined. The strain was a salt-tolerant facultative anaerobe with the initial optimum pH value at 8.0-9.0 and temperature at 30 degrees C on cell growth. During fermentation, hydrogen started to evolve when cell growth entered late-exponential phase and was mainly produced in the stationary phase. The strain was able to produce hydrogen over a wide range of initial pH from 5 to 10, with an optimum initial pH of 6. The level of hydrogen production was affected by the initial glucose concentration, and the optimum value was found to be 10 g glucose/l. The maximum hydrogen-producing yield (2246 ml/l) and overall hydrogen production rate (160 ml/l/h) were obtained at an initial glucose concentration of 10 g/l and an initial pH value of 7.2 in marine culture conditions. In particular, the level of hydrogen production was also affected by the salt concentration. Hydrogen production reached a higher level in fresh culture conditions than in marine ones. In marine conditions, hydrogen productivity was 108 ml/l/h at an initial glucose concentration of 20 g/l and pH value of 7.2, whereas, it increased by 27% in fresh conditions. In addition, this strain could produce hydrogen using glucose and many other carbon sources such as fructose, sucrose, sorbitol and so on. As a result, it is possible that P. agglomerans BH-18 is used for biohydrogen production and biological treatment of mariculture wastewater and marine organic waste. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.