960 resultados para Frontal-parietal coherence
Resumo:
To demonstrate the feasibility and potential usefulness of an offline fusion of matched optical coherence tomography (OCT) and intravascular ultrasound (IVUS)/virtual histology (IVUS-VH) images.
Resumo:
The purpose of this document is to make the output of the International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT) Standardization and Validation available to medical and scientific communities, through a peer-reviewed publication, in the interest of improving the diagnosis and treatment of patients with atherosclerosis, including coronary artery disease.
Resumo:
To quantify the circumferential healing process at 6 and 12 months following scaffold implantation.
Resumo:
To analyse and to compare the changes in the various optical coherence tomography (OCT), echogenicity and intravascular ultrasound virtual histology (VH) of the everolimus-eluting bioresorbable scaffold (ABSORB) degradation parameters during the first 12 months after ABSORB implantation. In the ABSORB study, changes in the appearance of the ABSORB scaffold were monitored over time using various intracoronary imaging modalities. The scaffold struts exhibited a progressive change in their black core area by OCT, in their ultrasound derived grey level intensity quantified by echogenicity, and in their backscattering ultrasound signal, identified as "pseudo dense-calcium" (DC) by VH.
Resumo:
This study describes the influence of age, sex, and working memory (WM) performance on the visuospatial WM network. Thirty-nine healthy children (7-12 years) completed a dot location functional magnetic resonance imaging (fMRI) task. Percent signal change measured the intensity and laterality indices measured the asymmetry of activation in frontal and parietal brain regions. Old children showed greater intensity of activation in parietal regions than young children but no differences in lateralization were observed. Intensity of activation was similar across sex and WM performance groups. Girls and high WM performers showed more right-sided lateralization of parietal regions than boys and low WM performers.
Resumo:
Antisocial and violent behaviour have been associated with both structural and functional brain abnormalities in the frontal and the temporal lobes. The aim of the present study was to assess cortical thickness in offenders undergoing forensic psychiatric assessments, one group with psychopathy (PSY, n=7) and one group with autism spectrum disorder (ASD, n=7) compared to each other as well as to a reference group consisting of healthy non-criminal subjects (RG, n=12). A second aim was to assess correlation between scores on a psychopathy checklist (PCL-SV) and cortical thickness. Magnetic resonance imaging (MRI) and surface-based cortical segmentation were used to calculate cortical thickness. Analyses used both regions of interest and statistical maps. When the two groups of offenders were compared, there were no differences in cortical thickness, but the PSY group had thinner cortex in the temporal lobes and in the whole right hemisphere compared to RG. There were no differences in cortical thickness between the ASD group and RG. Across subjects there was a negative correlation between PCL-SV scores and cortical thickness in the temporal lobes and the whole right hemisphere. The findings indicate that thinner cortex in the temporal lobes is present in psychopathic offenders and that these regions are important for the expression of psychopathy. However, whether thinner temporal cortex is a cause or a consequence of the antisocial behaviour is still unknown.
Resumo:
Objectives: Neurofunctional alterations are correlates of vulnerability to psychosis, as well as of the disorder itself. How these abnormalities relate to different probabilities for later transition to psychosis is unclear. We investigated vulnerability- versus disease-related versus resilience biomarkers of psychosis during working memory (WM) processing in individuals with an at-risk mental state (ARMS). Experimental design: Patients with “first-episode psychosis” (FEP, n = 21), short-term ARMS (ARMS-ST, n = 17), long-term ARMS (ARMS-LT, n = 16), and healthy controls (HC, n = 20) were investigated with an n-back WM task. We examined functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging (sMRI) data in conjunction using biological parametric mapping (BPM) toolbox. Principal observations: There were no differences in accuracy, but the FEP and the ARMS-ST group had longer reaction times compared with the HC and the ARMS-LT group. With the 2-back > 0-back contrast, we found reduced functional activation in ARMS-ST and FEP compared with the HC group in parietal and middle frontal regions. Relative to ARMS-LT individuals, FEP patients showed decreased activation in the bilateral inferior frontal gyrus and insula, and in the left prefrontal cortex. Compared with the ARMS-LT, the ARMS-ST subjects showed reduced activation in the right inferior frontal gyrus and insula. Reduced insular and prefrontal activation was associated with gray matter volume reduction in the same area in the ARMS-LT group. Conclusions: These findings suggest that vulnerability to psychosis was associated with neurofunctional alterations in fronto-temporo-parietal networks in a WM task. Neurofunctional differences within the ARMS were related to different duration of the prodromal state and resilience factors
Resumo:
The purpose of this study was to analyse retrospectively a feline population with intracranial neoplastic diseases, to document seizure patterns in these animals and to determine whether partial seizures were more frequently associated with structural brain lesions then generalised seizures. In addition, a comparison was made within the population with intracranial neoplasia between two groups of cats: one with and one without seizures. Special emphasis was given to the evaluation of tumour type, localisation and size of the lesion and its correlation with seizure prevalence. Sixty-one cats with histopathological diagnosis of intracranial tumour were identified. Fourteen cats (23%; group A) had a history of seizure(s). Forty-seven cats (77%; group B) had no history of seizure(s). Generalised tonic-clonic seizures were seen in eight cats (57%) and were the most common seizure pattern in our cats with intracranial neoplasia. Clusters of seizures were observed in six cats. Status epilepticus was observed in one patient. The mean age of the cats was 7.9 years within group A (median 8.5) and 9.3 years (median 10) within group B. The cats with lymphoma within both groups were significantly younger than cats with meningioma. In both groups meningioma and lymphoma were confirmed to be the most frequent tumour type, followed by glial cell tumours. The prevalence of the seizures in patients with glial cell tumours was 26.7%, 26.3% in patients with lymphomas and 15% in cases with meningiomas. In 33 cases (54.1%) the tumours were localised in the forebrain, 15 tumours (24.6%) were in the brainstem, four (6.6%) in the cerebellum and nine tumours (14.7%) had multifocal localisation. Parietal lobe and basal ganglia mostly affected group A. In group B tumours were most frequently located in the parietal and frontal lobes as well as in the diencephalon. A positive association was documented between the localisation of a tumour in the forebrain and seizure occurrence.
Resumo:
The aim of the study was to examine the effect of low-frequency repetitive transcranial magnetic stimulation on saccade triggering. In five participants, a train of 600 pulses with a frequency of 1 Hz was applied over the right frontal eye field and--as control condition--over the vertex. After repetitive transcranial magnetic stimulation application, oculomotor performance was evaluated with an overlap paradigm. The results show that the repetitive transcranial magnetic stimulation effect was specific for frontal eye field stimulation. Saccade latencies were found to be increased bilaterally for several minutes after the stimulation, and the time course of recovery was different for the ipsilateral and contralateral sides. The results are discussed in the light of possible local and remote repetitive transcranial magnetic stimulation effects on the oculomotor network.
Resumo:
OBJECTIVES: To retrospectively evaluate our experience with frontal sinus obliteration using hydroxyapatite cement (BoneSource; Stryker Biotech Europe, Montreux, Switzerland) and compare it with fat obliteration over the approximate same period. Frontal sinus obliteration with hydroxyapatite cement represents a new technique for obliteration of the frontal sinus after mucocele resection. METHODS: Exploration of the frontal sinus was performed using bicoronal, osteoplastic flaps, with mucosal removal and duct obliteration with tissue glue and muscle or fascia. Flaps were elevated over the periorbita, and Silastic sheeting was used to protect the BoneSource material from exposure as it dried. The frontal table was replaced when appropriate. RESULTS: Sixteen patients underwent frontal sinus obliteration with fat (fat obliteration group), and 38 patients underwent obliteration with BoneSource (BoneSource group). Fat obliteration failed in 2 patients, who underwent subsequent BoneSource obliteration, and none of the patients in the BoneSource group has required removal of material because of recurrent complications. Frontobasal trauma (26 patients [68%] in the BoneSource group and 9 patients [56%] in the fat obliteration group) was the most common history of mucocele formation in both groups. Major complications in the BoneSource group included 1 patient with skin fistula, which was managed conservatively, and 1 patient with recurrent ethmoiditis, which was managed surgically. Both complications were not directly attributed to the use of BoneSource. Contour deficit of the frontal bone occurred in 1 patient in the fat obliteration group and in none in the BoneSource group. Two patients in the fat obliteration group had donor site complications (hematoma and infection). Thirteen patients in the BoneSource group had at least 1 prior attempt at mucocele drainage, and no statistical relation existed between recurrent surgery and preservation of the anterior table. CONCLUSION: Hydroxyapatite is a safe, effective material to obliterate frontal sinuses infected with mucoceles, with minimal morbidity and excellent postoperative contour.
Resumo:
Searching for the neural correlates of visuospatial processing using functional magnetic resonance imaging (fMRI) is usually done in an event-related framework of cognitive subtraction, applying a paradigm comprising visuospatial cognitive components and a corresponding control task. Besides methodological caveats of the cognitive subtraction approach, the standard general linear model with fixed hemodynamic response predictors bears the risk of being underspecified. It does not take into account the variability of the blood oxygen level-dependent signal response due to variable task demand and performance on the level of each single trial. This underspecification may result in reduced sensitivity regarding the identification of task-related brain regions. In a rapid event-related fMRI study, we used an extended general linear model including single-trial reaction-time-dependent hemodynamic response predictors for the analysis of an angle discrimination task. In addition to the already known regions in superior and inferior parietal lobule, mapping the reaction-time-dependent hemodynamic response predictor revealed a more specific network including task demand-dependent regions not being detectable using the cognitive subtraction method, such as bilateral caudate nucleus and insula, right inferior frontal gyrus and left precentral gyrus.
Resumo:
Previous studies on motion perception revealed motion-processing brain areas sensitive to changes in luminance and texture (low-level) and changes in salience (high-level). The present functional magnetic resonance imaging (fMRI) study focused on motion standstill. This phenomenon, occurring at fast presentation frequencies of visual moving objects that are perceived as static, has not been previously explored by neuroimaging techniques. Thirteen subjects were investigated while perceiving apparent motion at 4 Hz, at 30 Hz (motion standstill), isoluminant static and flickering stimuli, fixation cross, and blank screen, presented randomly and balanced for rapid event-related fMRI design. Blood oxygenation level-dependent (BOLD) signal in the occipito-temporal brain region MT/V5 increased during apparent motion perception. Here we could demonstrate that brain areas like the posterior part of the right inferior parietal lobule (IPL) demonstrated higher BOLD-signal during motion standstill. These findings suggest that the activation of higher-order motion areas is elicited by apparent motion at high presentation rates (motion standstill). We interpret this observation as a manifestation of an orienting reaction in IPL towards stimulus motion that might be detected but not resolved by other motion-processing areas (i.e., MT/V5).
Resumo:
Situationally adaptive behavior relies on the identification of relevant target stimuli, the evaluation of these with respect to the current context and the selection of an appropriate action. We used functional magnetic resonance imaging (fMRI) to disentangle the neural networks underlying these processes within a single task. Our results show that activation of mid-ventrolateral prefrontal cortex (PFC) reflects the perceived presence of a target stimulus regardless of context, whereas context-appropriate evaluation is subserved by mid-dorsolateral PFC. Enhancing demands on response selection by means of response conflict activated a network of regions, all of which are directly connected to motor areas. On the midline, rostral anterior paracingulate cortex was found to link target detection and response selection by monitoring for the presence of behaviorally significant conditions. In summary, we provide new evidence for process-specific functional dissociations in the frontal lobes. In target-centered processing, target detection in the VLPFC is separable from contextual evaluation in the DLPFC. Response-centered processing in motor-associated regions occurs partly in parallel to these processes, which may enhance behavioral efficiency, but it may also lead to reaction time increases when an irrelevant response tendency is elicited.