989 resultados para Frequency discriminating circuit
Resumo:
Ultraviolet radiation has been generated by tangentially phase-matched sum-frequency mixing in biaxial L-arginine phosphate (LAP) crystal for the first time using Nd:YAG output at 1064 nm and Rh 6G dye laser output at 560 nm as the two input sources. Characterization has also been made of such a cheap, biaxial crystal for its possible use in devices for tangentially phase-matched short wavelength generation. If the crystal is of proper cut, thickness and quality so that its maximum capability can be exploited it can replace the potassium dihydrogen phosphate (KDP) group of crystals for various applications.
Resumo:
This paper presents a physical explanation of the phenomenon of low frequency oscillations experienced in power systems. A brief account of the present practice of providing fixed gain power system stabilizers (PSS) is followed by a summary of some of the recent design proposals for adaptive PSS. A novel PSS based on the effort of cancelling the negative damping torque produced by the automatic voltage regulator (AVR) is presented along with some recent studies on a multimachine system using a frequency identification technique.
Resumo:
Theoretical analysis of internal frequency doubling in actively mode locked broadband solid state lasers is presented. The analysis is used to study the dependence of mode locked pulsewidth on the second harmonic conversion efficiency, the modulation depth, and the tuning element bandwidth in an AM mode locked Ti: sapphire laser. The results are presented in the form of graphs.
Resumo:
A simple yet accurate equivalent circuit model was developed for the analysis of slow-wave properties (dispersion and interaction impedance characteristics) of a rectangular folded-waveguide slow-wave structure. Present formulation includes the effects of the presence of beam-hole in the circuit, which were ignored in existing approaches. The analysis was benchmarked against measurement as well as with 3D electromagnetic modeling using MAFIA for two typical slow-wave structures operating in Ka- and Q-bands, and close agreements were observed. The analysis was extended for demonstrating the effect of the variation of beam-hole radius on the RF interaction efficiency of the device. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
The equivalent circuit parameters for a pentacene organic field-effect transistor are determined from low frequency impedance measurements in the dark as well as under light illumination. The source-drain channel impedance parameters are obtained from Bode plot analysis and the deviations at low frequency are mainly due to the contact impedance. The charge accumulation at organic semiconductor-metal interface and dielectric-semiconductor interface is monitored from the response to light as an additional parameter to find out the contributions arising from photovoltaic and photoconductive effects. The shift in threshold voltage is due to the accumulation of photogenerated carriers under source-drain electrodes and at dielectric-semiconductor interface, and also this dominates the carrier transport. The charge carrier trapping at various interfaces and in the semiconductor is estimated from the dc and ac impedance measurements under illumination. (c) 2010 American Institute of Physics. doi: 10.1063/1.3517085]
Resumo:
A novel high sensitive fiber Bragg grating (FBG) strain sensing technique using lasers locked to relative frequency reference is proposed and analyzed theoretically. Static strain on FBG independent of temperature can be measured by locking frequency of diode laser to the mid reflection frequency of matched reference FBG, which responds to temperature similar to that of the sensor FBG, but is immune to strain applied to the same. Difference between light intensities reflected from the sensor and reference FBGs (proportional to the difference between respective pass band gains at the diode laser frequency) is not only proportional to the relative strain between the sensor and reference FBGs but also independent of servo residual frequency errors. Usage of relative frequency reference avoids all complexities involved in the usage of absolute frequency reference, hence, making the system simple and economical. Theoretical limit for dynamic and static strain sensitivities considering all major noise contributions are of the order of 25 (p epsilon) / root Hz and 1.2 n epsilon / root Hz respectively.
Resumo:
Diffuse optical tomographic image reconstruction uses advanced numerical models that are computationally costly to be implemented in the real time. The graphics processing units (GPUs) offer desktop massive parallelization that can accelerate these computations. An open-source GPU-accelerated linear algebra library package is used to compute the most intensive matrix-matrix calculations and matrix decompositions that are used in solving the system of linear equations. These open-source functions were integrated into the existing frequency-domain diffuse optical image reconstruction algorithms to evaluate the acceleration capability of the GPUs (NVIDIA Tesla C 1060) with increasing reconstruction problem sizes. These studies indicate that single precision computations are sufficient for diffuse optical tomographic image reconstruction. The acceleration per iteration can be up to 40, using GPUs compared to traditional CPUs in case of three-dimensional reconstruction, where the reconstruction problem is more underdetermined, making the GPUs more attractive in the clinical settings. The current limitation of these GPUs in the available onboard memory (4 GB) that restricts the reconstruction of a large set of optical parameters, more than 13, 377. (C) 2010 Society of Photo-Optical Instrumentation Engineers. DOI: 10.1117/1.3506216]
Resumo:
This paper considers the problem of spectrum sensing in cognitive radio networks when the primary user employs Orthogonal Frequency Division Multiplexing (OFDM). We specifically consider the scenario when the channel between the primary and a secondary user is frequency selective. We develop cooperative sequential detection algorithms based on energy detectors. We modify the detectors to mitigate the effects of some common model uncertainties such as timing and frequency offset, IQ-imbalance and uncertainty in noise and transmit power. The performance of the proposed algorithms are studied via simulations. We show that the performance of the energy detector is not affected by the frequency selective channel. We also provide a theoretical analysis for some of our algorithms.
Resumo:
The as-deposited and annealed radio frequency reactive magnetron sputtered tantalum oxide (Ta2O5) films were characterized by studying the chemical binding configuration, structural and electrical properties. X-ray photoelectron spectroscopy and X-ray diffraction analysis of the films elucidate that the film annealed at 673 K was stoichiometric with orthorhombic beta-phase Ta2O5. The dielectric constant values of the tantalum oxide capacitors with the sandwich structure of Al/Ta2O5/Si were in the range from 14 to 26 depending on the post-deposition annealing temperature. The leakage current density was < 20 nA cm(-2) at the gate bias voltage of 0.04 MV/cm for the annealed films. The electrical conduction mechanism observed in the films was Poole-Frenkel. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The issue of dynamic spectrum scene analysis in any cognitive radio network becomes extremely complex when low probability of intercept, spread spectrum systems are present in environment. The detection and estimation become more complex if frequency hopping spread spectrum is adaptive in nature. In this paper, we propose two phase approach for detection and estimation of frequency hoping signals. Polyphase filter bank has been proposed as the architecture of choice for detection phase to efficiently detect the presence of frequency hopping signal. Based on the modeling of frequency hopping signal it can be shown that parametric methods of line spectral analysis are well suited for estimation of frequency hopping signals if the issues of order estimation and time localization are resolved. An algorithm using line spectra parameter estimation and wavelet based transient detection has been proposed which resolves above issues in computationally efficient manner suitable for implementation in cognitive radio. The simulations show promising results proving that adaptive frequency hopping signals can be detected and demodulated in a non cooperative context, even at a very low signal to noise ratio in real time.
Resumo:
A theoretical study of the dynamics of photo-electron transfer reactions in the Marcus inverted regime is presented. This study is motivated partly by the recent proposal of Barbara et al. (J. Phys. Chem. 96, 3728, 1991) that a minimal model of an electron transfer reaction should consist of a polar solvent mode (X), a low frequency vibrational mode (Q) and one high frequency mode (q). Interplay between these modes may be responsible for the crossover observed in the dynamics from a solvent controlled to a vibrational controlled electron transfer. The following results have been obtained. (i) In the case of slowly relaxing solvents, the proximity of the point of excitation to an effective sink on the excited surface is critical in determining the decay of the reactant population. This is because the Franck-Condon overlap between the reactant ground and the product excited states decreases rapidly with increase in the quantum number of the product vibrational state. (ii) Non-exponential solvation dynamics has an important effect in determining the rates of electron transfer. Especially, a biphasic solvation and a large coupling between the reactant and the product states both may be needed to explain the experimental results. ©1996 American Institute of Physics
Resumo:
A sample of 96 compact flat-spectrum extragalactic sources, spread evenly over all galactic latitudes, has been studied at 327 MHz for variability over a time interval of about 15 yr. The variability shows a dependence on galactic latitude being less both at low and high latitudes and peaking around absolute value of b approximately 15-degrees. The latitude dependence is surprisingly similar in both the galactic centre and anticentre directions. Assuming various single and multi-component distributions for the ionized, irregular interstellar plasma, we have tried to generate the observed dependence using a semi-qualitative treatment of refractive interstellar scintillations. We find that it is difficult to fit our data with any single or double component cylindrical distribution. Our data suggests that the observed variability could be influenced by the spiral structure of our Galaxy.
Resumo:
We examine three hierarchies of circuit classes and show they are closed under complementation. (1) The class of languages recognized by a family of polynomial size skew circuits with width O(w), are closed under complement. (2) The class of languages recognized by family of polynomial size circuits with width O(w) and polynomial tree-size, are closed under complement. (3) The class of languages recognized by a family of polynomial size, O(log(n)) depth, bounded AND fan-in with OR fan-in f (f⩾log(n)) circuits are closed under complement. These improve upon the results of (i) Immerman (1988) and Szelepcsenyi (1988), who show that 𝒩L𝒪𝒢 is closed under complementation, and (ii) Borodin et al. (1989), who show that L𝒪𝒢𝒞ℱL is closed under complement