970 resultados para Fractional Laplace and Dirac operators
Resumo:
The activity of Control Center operators is important to guarantee the effective performance of Power Systems. Operators’ actions are crucial to deal with incidents, especially severe faults like blackouts. In this paper, we present an Intelligent Tutoring approach for training Portuguese Control Center operators in tasks like incident analysis and diagnosis, and service restoration of Power Systems. Intelligent Tutoring System (ITS) approach is used in the training of the operators, having into account context awareness and the unobtrusive integration in the working environment. Several Artificial Intelligence techniques were criteriously used and combined together to obtain an effective Intelligent Tutoring environment, namely Multiagent Systems, Neural Networks, Constraint-based Modeling, Intelligent Planning, Knowledge Representation, Expert Systems, User Modeling, and Intelligent User Interfaces.
Resumo:
In this paper, we discuss the mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis. The Schrödinger equation and Heisenberg uncertainty principles are structured within local fractional operators.
Resumo:
This paper presents a comparison between proportional integral control approaches for variable speed wind turbines. Integer and fractional-order controllers are designed using linearized wind turbine model whilst fuzzy controller also takes into account system nonlinearities. These controllers operate in the full load region and the main objective is to extract maximum power from the wind turbine while ensuring the performance and reliability required to be integrated into an electric grid. The main contribution focuses on the use of fractional-order proportional integral (FOPI) controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. A comparison between proposed control approaches for the variable speed wind turbines is presented using a wind turbine benchmark model in the Matlab/Simulink environment. Results show that FOPI has improved system performance when compared with classical PI and fuzzy PI controller outperforms the integer and fractional-order control due to its capability to deal with system nonlinearities and uncertainties. © 2014 IEEE.
Resumo:
This paper describes the use of integer and fractional electrical elements, for modelling two electrochemical systems. A first type of system consists of botanical elements and a second type is implemented by electrolyte processes with fractal electrodes. Experimental results are analyzed in the frequency domain, and the pros and cons of adopting fractional-order electrical components for modelling these systems are compared.
Resumo:
Fractional central differences and derivatives are studied in this article. These are generalisations to real orders of the ordinary positive (even and odd) integer order differences and derivatives, and also coincide with the well known Riesz potentials. The coherence of these definitions is studied by applying the definitions to functions with Fourier transformable functions. Some properties of these derivatives are presented and particular cases studied.
Resumo:
The fractional order calculus (FOC) is as old as the integer one although up to recently its application was exclusively in mathematics. Many real systems are better described with FOC differential equations as it is a well-suited tool to analyze problems of fractal dimension, with long-term “memory” and chaotic behavior. Those characteristics have attracted the engineers' interest in the latter years, and now it is a tool used in almost every area of science. This paper introduces the fundamentals of the FOC and some applications in systems' identification, control, mechatronics, and robotics, where it is a promissory research field.
Resumo:
The goal of this study is the analysis of the dynamical properties of financial data series from worldwide stock market indexes during the period 2000–2009. We analyze, under a regional criterium, ten main indexes at a daily time horizon. The methods and algorithms that have been explored for the description of dynamical phenomena become an effective background in the analysis of economical data. We start by applying the classical concepts of signal analysis, fractional Fourier transform, and methods of fractional calculus. In a second phase we adopt the multidimensional scaling approach. Stock market indexes are examples of complex interacting systems for which a huge amount of data exists. Therefore, these indexes, viewed from a different perspectives, lead to new classification patterns.
Resumo:
This paper presents a comparison between proportional integral control approaches for variable speed wind turbines. Integer and fractional-order controllers are designed using linearized wind turbine model whilst fuzzy controller also takes into account system nonlinearities. These controllers operate in the full load region and the main objective is to extract maximum power from the wind turbine while ensuring the performance and reliability required to be integrated into an electric grid. The main contribution focuses on the use of fractional-order proportional integral (FOPI) controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. A comparison between proposed control approaches for the variable speed wind turbines is presented using a wind turbine benchmark model in the Matlab/Simulink environment. Results show that FOPI has improved system performance when compared with classical PI and fuzzy PI controller outperforms the integer and fractional-order control due to its capability to deal with system nonlinearities and uncertainties. © 2014 IEEE.
Resumo:
The trajectory planning of redundant robots through the pseudoinverse control leads to undesirable drift in the joint space. This paper presents a new technique to solve the inverse kinematics problem of redundant manipulators, which uses a fractional differential of order α to control the joint positions. Two performance measures are defined to examine the strength and weakness of the proposed method. The positional error index measures the precision of the manipulator's end-effector at the target position. The repeatability performance index is adopted to evaluate if the joint positions are repetitive when the manipulator execute repetitive trajectories in the operational workspace. Redundant and hyper-redundant planar manipulators reveal that it is possible to choose in a large range of possible values of α in order to get repetitive trajectories in the joint space.
Resumo:
The synthesis and application of fractional-order controllers is now an active research field. This article investigates the use of fractional-order PID controllers in the velocity control of an experimental modular servo system. The systern consists of a digital servomechanism and open-architecture software environment for real-time control experiments using MATLAB/Simulink. Different tuning methods will be employed, such as heuristics based on the well-known Ziegler Nichols rules, techniques based on Bode’s ideal transfer function and optimization tuning methods. Experimental responses obtained from the application of the several fractional-order controllers are presented and analyzed. The effectiveness and superior performance of the proposed algorithms are also compared with classical integer-order PID controllers.
Resumo:
This article presents a dynamical analysis of several traffic phenomena, applying a new modelling formalism based on the embedding of statistics and Laplace transform. The new dynamic description integrates the concepts of fractional calculus leading to a more natural treatment of the continuum of the Transfer Function parameters intrinsic in this system. The results using system theory tools point out that it is possible to study traffic systems, taking advantage of the knowledge gathered with automatic control algorithms. Dynamics, Games and Science I Dynamics, Games and Science I Look Inside Other actions Export citation About this Book Reprints and Permissions Add to Papers Share Share this content on Facebook Share this content on Twitter Share this content on LinkedIn
Resumo:
Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades due to the progress in the area of nonlinear dynamics. This article discusses several applications of fractional calculus in science and engineering, namely: the control of heat systems, the tuning of PID controllers based on fractional calculus concepts and the dynamics in hexapod locomotion.
Resumo:
This paper investigates the adoption of entropy for analyzing the dynamics of a multiple independent particles system. Several entropy definitions and types of particle dynamics with integer and fractional behavior are studied. The results reveal the adequacy of the entropy concept in the analysis of complex dynamical systems.
Resumo:
Journal of Vibration and Control, Vol. 14, Nº 9-10
Fractional derivatives: probability interpretation and frequency response of rational approximations
Resumo:
The theory of fractional calculus (FC) is a useful mathematical tool in many applied sciences. Nevertheless, only in the last decades researchers were motivated for the adoption of the FC concepts. There are several reasons for this state of affairs, namely the co-existence of different definitions and interpretations, and the necessity of approximation methods for the real time calculation of fractional derivatives (FDs). In a first part, this paper introduces a probabilistic interpretation of the fractional derivative based on the Grünwald-Letnikov definition. In a second part, the calculation of fractional derivatives through Padé fraction approximations is analyzed. It is observed that the probabilistic interpretation and the frequency response of fraction approximations of FDs reveal a clear correlation between both concepts.