863 resultados para Flow and segregation behaviour
Resumo:
To study the effects of a milking system that partially compensates for milk flow-dependent vacuum loss compared with a standard (high-line) milking unit in a tie-stall barn, milk flow and vacuum patterns were recorded in 10 cows during machine milking with 2 milking systems in a crossover design for 7 d each. Before and after each treatment period postmilking teat condition was recorded by ultrasound cross-sectioning. Additionally, 2 methods to measure teat tissue condition were compared: longitudinal teat ultrasound cross-sectioning and teat tissue density measurements with the spring-loaded caliper (cutimeter method). The partial compensation of milk flow-dependent vacuum loss caused an elevation of the peak flow rate (4.74+/-0.08 vs. 4.29+/-0.07 kg/min) and a shorter duration of plateau (1.57+/-0.06 vs. 1.96+/-0.07 min) compared with the standard milking system. Total milk yield, duration of incline and decline of milk flow, average milk flow, time until peak flow rate, main milking time, and total milking time did not differ between treatments (overall means: 13.75+/-0.17 kg; 0.65+/-0.01 min; 2.88+/-0.09 min; 2.82+/-0.05 kg/min; 1.65+/-0.03 min; 5.23+/-0.09 min, and 5.30+/-0.10 min, respectively). The vacuum drop in the short milk tube during periods of high milk flow was less in the compensating vacuum than in the standard milking system (11+/-1.1 vs. 15+/-0.7 kPa). Teat measures as determined by ultrasound remained unchanged over the entire experimental period with both milking systems. Postmilking teat tissue measures including their recovery within 20 min after the end of milking show a correlation (0.85 and 0.71, respectively) between the methods used (ultrasound and cutimeter method). In conclusion, a more constant vacuum at the teat tip (within the short milk tube) during periods of high milk flow affected milk flow patterns, mainly increasing peak flow rate. However, the reduced vacuum loss did not increase the overall speed of milking. In addition, effects of higher vacuum stability on teat condition and udder health were not obvious.
Resumo:
Intracerebral contusions can lead to regional ischemia caused by extensive release of excitotoxic aminoacids leading to increased cytotoxic brain edema and raised intracranial pressure. rCBF measurements might provide further information about the risk of ischemia within and around contusions. Therefore, the aim of the presented study was to compare the intra- and perilesional rCBF of hemorrhagic, non-hemorrhagic and mixed intracerebral contusions. In 44 patients, 60 stable Xenon-enhanced CT CBF-studies were performed (EtCO2 30 +/- 4 mmHg SD), initially 29 hours (39 studies) and subsequent 95 hours after injury (21 studies). All lesions were classified according to localization and lesion type using CT/MRI scans. The rCBF was calculated within and 1-cm adjacent to each lesion in CT-isodens brain. The rCBF within all contusions (n = 100) of 29 +/- 11 ml/100 g/min was significantly lower (p < 0.0001, Mann-Whitney U) compared to perilesional rCBF of 44 +/- 12 ml/100 g/min and intra/perilesional correlation was 0.4 (p < 0.0005). Hemorrhagic contusions showed an intra/perilesional rCBF of 31 +/- 11/44 +/- 13 ml/100 g/min (p < 0.005), non-hemorrhagic contusions 35 +/- 13/46 +/- 10 ml/100 g/min (p < 0.01). rCBF in mixed contusions (25 +/- 9/44 +/- 12 ml/100 g/min, p < 0.0001) was significantly lower compared to hemorrhagic and non-hemorrhagic contusions (p < 0.02). Intracontusional rCBF is significantly reduced to 29 +/- 11 ml/100 g/min but reduced below ischemic levels of 18 ml/100 g/min in only 16% of all contusions. Perilesional CBF in CT normal appearing brain closed to contusions is not critically reduced. Further differentiation of contusions demonstrates significantly lower rCBF in mixed contusions (defined by both hyper- and hypodense areas in the CT-scan) compared to hemorrhagic and non-hemorrhagic contusions. Mixed contusions may evolve from hemorrhagic contusions with secondary increased perilesional cytotoxic brain edema leading to reduced cerebral blood flow and altered brain metabolism. Therefore, the treatment of ICP might be individually modified by the measurement of intra- and pericontusional cerebral blood.
Resumo:
The area of microfluidics has increased in popularity with such fields as MEMS, microreactors, microscaleheat exchangers, etc. A comprehensive understanding of dissipation mechanisms for fluid flow in microchannels is required to accurately predict the behavior in these small systems. Tests were performed using a constant pressure potential created by two immiscible fluids juxtaposed in a microchannel. This study focused on the flow and dissipation mechanisms in round and square microchannels. There are four major dissipation mechanisms in slug flow; wall shear, dissipation at the contact line, menisci interaction and the stretching of the interface. A force balance between the internal driving potential, viscous drag and interface stretching was used to develop a model for the prediction of the velocity of a bislug in a microchannel. Interface stretching is a dissipation mechanism that has been included due to the unique system properties and becomes increasingly more important as the bislug decreases in length.
Resumo:
Assessment of regional blood flow changes is difficult in the clinical setting. We tested whether conventional pulmonary artery catheters (PACs) can be used to measure regional venous blood flows by inverse thermodilution (ITD). Inverse thermodilution was tested in vitro and in vivo using perivascular ultrasound Doppler (USD) flow probes as a reference. In anesthetized pigs, PACs were inserted in jugular, hepatic, renal, and femoral veins, and their measurements were compared with simultaneous USD flow measurements from carotid, hepatic, renal, and femoral arteries and from portal vein. Fluid boluses were injected through the PAC's distal port, and temperature changes were recorded from the proximally located thermistor. Injectates of 2 and 5 mL at 22 degrees C and 4 degrees C were used. Flows were altered by using a roller pump (in vitro), and infusion of dobutamine and induction of cardiac tamponade, respectively. In vitro: At blood flows between 400 mL . min-1 and 700 mL . min-1 (n = 50), ITD and USD correlated well (r = 0.86, P < 0.0001), with bias and limits of agreement of 3 +/- 101 mL . min-1. In vivo: 514 pairs of measurements had to be excluded from analysis for technical reasons, and 976 were analyzed. Best correlations were r = 0.87 (P < 0.0001) for renal flow and r = 0.46 (P < 0.0001) for hepatic flow. No significant correlation was found for cerebral and femoral flows. Inverse thermodilution using conventional PAC compared moderately well with USD for renal but not for other flows despite good in vitro correlation in various conditions. In addition, this method has significant technical limitations.
Resumo:
We have integrated the basic psychological needs approach from self-determination theory with motive disposition theory in order to enhance the prediction of flow experience in sports. We hypothesize that an environment that enables people to fulfill their basic psychological needs for competence and social relatedness results in flow. Additionally, we assume that the effect of competence need satisfaction is moderated by the achievement motive and that the effect of need-for-relatedness satisfaction is moderated by the affiliation motive. Four studies show the expected positive effects of need satisfaction on flow and further confirm that high achievement and affiliation-motivated individuals benefit more from competence and relatedness sports environments, respectively, than individuals low in these motives.
Resumo:
Flow represents an optimal psychological state that is intrinsically rewarding. However, to date only a few studies have investigated the conditions for flow in sports. The present research aims to expand our understanding of the psychological factors that promote the flow experience in sports, focusing on the person-goal fit, or more precisely on the athletes’ situational and dispositional goal orientations. We hypothesize that a fit between an athlete’s situational and dispositional approach versus avoidance goal orientation should promote flow, whereas a non-fit will hinder flow during sports. In addition to the flow experience, we hypothesize that an athlete’s affective well-being is also affected by the person-goal fit. Here our assumptions are theoretically rooted in research on person-environment fit. An experimental study in an ecologically valid sport setting was conducted in order to draw causal conclusions and derive useful strategies for the practice of sports. Specifically, we investigated 67 male soccer players from a regional amateur league during a regular training session. They were randomly assigned to an approach or avoidance goal group and asked to take five penalty shots. Immediately afterwards, their flow experience and affective well-being during the penalty shootout were measured. As predicted, soccer players with a strong dispositional approach goal orientation experienced more flow and reported higher affective well-being when they were assigned to the approach goal. In contrast, soccer players with a strong dispositional avoidance goal orientation benefited from being assigned an avoidance goal in terms of their flow experience and affective well-being. The results are discussed critically with respect to their theoretical and practical implications.
Resumo:
Digital TV offers of 200 channels and 500 video-on-demand films, podcasting, mobile television, a new web blog being created every two seconds - these are some of the factual elements depicting contemporary audiovisual media in the digital environment. The present article looks into some of these technological advances and sketches their implications for the markets of media content, in particular as newly emerging patterns of consumer and business behaviour are concerned. Ultimately, it puts forward the question of whether the existing audiovisual media regulatory models, which are still predominantly analogue-based, have been rendered obsolete by the transformed (and continually transforming) digital environment.
Resumo:
We investigate causes of the stratigraphic variation revealed in a 177 km, 400 MHz short-pulse radar profile of firn from West Antarctica. The profile covers 56 m depth, and its direction was close to those of the ice flow and mean wind. The average, near-surface accumulation rates calculated from the time delays of one radar horizon consistently show minima on leeward slopes and maxima on windward slopes, confirming an earlier study based on stake observations. The stratigraphic variation includes up to 30 m depth variation in individual horizons over tens of km, fold limbs that become progressively steeper with depth, and fold-hinge loci that change direction or propagate down-ice with depth over distances far less than predicted by the ice speeds. We use an accumulation rate model to show how local rate anomalies and the effect of ice speed upon a periodic variation in accumulation rate cause these phenomena, and we reproduce two key features seen in the stratigraphic variations. We conclude that the model provides an explanation of changes in spatial stratigraphy and local measures of accumulation history given the constraints of surface topography, ice and wind velocities, and a general accumulation rate for an area.
Resumo:
In order to investigate stress responses of horses in walkers with and without electricity, 12 horses were trained during 3 weeks in a horse walker with and without the use of electricity (3.7 kV). To evaluate the stress response, cortisol levels in the blood were measured, the heart rate was monitored using the Polar® system and the behaviour was evaluated. Neither the cortisol levels nor the heart rates showed any relevant statistically significant difference between horses moved in the horse walker with or without the use of electricity. The highest cortisol levels and heart rates were recorded during the first week (habituation period). A significant difference could be observed regarding spontaneous compartment changes: while this happened mainly during the first week and before the first use of electricity, no horses changed compartments in the periods when electricity was used and thereafter. The results of this study indicate that the use of electricity in the horse walker does not seem to cause significant detectable stress in the horses.
Resumo:
The challenge for sustainable organic dairy farming is identification of cows that are well adapted to forage-based production systems. Therefore, the aim of this study was to compare the grazing behaviour, physical activity and metabolic profile of two different Holstein strains kept in an organic grazing system without concentrate supplementation. Twelve Swiss (HCH ; 566 kg body weight (BW) and 12 New Zealand Holstein-Friesian (HNZ ; 530 kg BW) cows in mid-lactation were kept in a rotational grazing system. After an adaptation period, the milk yield, nutrient intake, physical activity and grazing behaviour were recorded for each cow for 7 days. On three consecutive days, blood was sampled at 07:00, 12:00 and 17:00 h from each cow by jugular vein puncture. Data were analysed using linear mixed models. No differences were found in milk yield, but milk fat (3.69 vs. 4.05%, P = 0.05) and milk protein percentage (2.92 vs. 3.20%, P < 0.01) were lower in HCH than in HNZ cows. Herbage intake did not differ between strains, but organic matter digestibility was greater (P = 0.01) in HCH compared to HNZ cows. The HCH cows spent less (P = 0.04) time ruminating (439 vs. 469 min/day) and had a lower (P = 0.02) number of ruminating boli when compared to the HNZ cows. The time spent eating and physical activity did not differ between strains. Concentrations of IGF-1 and T3 were lower (P ≤ 0.05) in HCH than HNZ cows. In conclusion, HCH cows were not able to increase dry matter intake in order to express their full genetic potential for milk production when kept in an organic grazing system without concentrate supplementation. On the other hand, HNZ cows seem to compensate for the reduced nutrient availability better than HCH cows but could not use that advantage for increased production efficiency
Resumo:
OBJECTIVE We sought to evaluate the feasibility of k-t parallel imaging for accelerated 4D flow MRI in the hepatic vascular system by investigating the impact of different acceleration factors. MATERIALS AND METHODS k-t GRAPPA accelerated 4D flow MRI of the liver vasculature was evaluated in 16 healthy volunteers at 3T with acceleration factors R = 3, R = 5, and R = 8 (2.0 × 2.5 × 2.4 mm(3), TR = 82 ms), and R = 5 (TR = 41 ms); GRAPPA R = 2 was used as the reference standard. Qualitative flow analysis included grading of 3D streamlines and time-resolved particle traces. Quantitative evaluation assessed velocities, net flow, and wall shear stress (WSS). RESULTS Significant scan time savings were realized for all acceleration factors compared to standard GRAPPA R = 2 (21-71 %) (p < 0.001). Quantification of velocities and net flow offered similar results between k-t GRAPPA R = 3 and R = 5 compared to standard GRAPPA R = 2. Significantly increased leakage artifacts and noise were seen between standard GRAPPA R = 2 and k-t GRAPPA R = 8 (p < 0.001) with significant underestimation of peak velocities and WSS of up to 31 % in the hepatic arterial system (p <0.05). WSS was significantly underestimated up to 13 % in all vessels of the portal venous system for k-t GRAPPA R = 5, while significantly higher values were observed for the same acceleration with higher temporal resolution in two veins (p < 0.05). CONCLUSION k-t acceleration of 4D flow MRI is feasible for liver hemodynamic assessment with acceleration factors R = 3 and R = 5 resulting in a scan time reduction of at least 40 % with similar quantitation of liver hemodynamics compared with GRAPPA R = 2.
Resumo:
The aim of this study is to assess the experience of flow and its relationship with the personality traits and the age of the adolescents. For this purpose, 224 participants of both sexes were selected, aged 12-20 years, who were examined with various tools: Flow State in adolescents (Leibovich de Figueroa; Schmidt, 2013). This is a self-report technique of 28 items that assesses the Flow State, covering all the aspects theoretically listed as components in the optimal experience of enjoyment. And a self-report Being a teenager nowadays, which evaluates 33 pairs of opposite personality characteristics that represent the personality domains of the NEO-PI-R (Costa; McCrae, 1992. Costa; McCrae, 2005, Leibovich; Schmidt, 2005). Among the found results, it was observed that in the adolescents with high scores on the scale of Flow State, the main personality trait was extroversion. Also, the influence of age on optimal flow experience appears in the chosen activities
Resumo:
Although numerous studies have addressed the migration and dive behaviour of southern elephant seals (Mirounga leonina), questions remain about their habitat use in the marine environment. We report on the vertical use of the water column in the species and the potential lifetime implications for southern elephant seals from Marion Island. Long-term mark-resight data were used to complement vertical habitat use for 35 known individuals tagged with satellite-relay data loggers, resulting in cumulative depth use extrapolated for each individual over its estimated lifespan. Seals spent on average 77.59% of their lives diving at sea, 7.06% at the sea surface, and 15.35% hauled out on land. Some segregation was observed in maximum dive depths and depth use between male and female animals-males evidently being physiologically more capable of exploiting increased depths. Females and males spent 86.98 and 80.89% of their lives at sea, respectively. While at sea, all animals spent more time between 300 and 400 m depth, than any other depth category. Males and females spent comparable percentages of their lifetimes below 100 m depth (males: 65.54%; females: 68.92%), though males spent 8.98% of their lives at depths in excess of 700 m, compared to females' 1.84% at such depths. Adult males often performed benthic dives in excess of 2,000 m, including the deepest known recorded dive of any air-breathing vertebrate (>2,133 m). Our results provide a close approximation of vertical habitat use by southern elephant seals, extrapolated over their lifespans, and we discuss some physiological and developmental implications of their variable depth use.
Resumo:
Sexual segregation in habitat use occurs in a number of animal species, including southern elephant seals, where differences in migration localities and dive behaviour between sexes have been recorded. Due to the extreme sexual size dimorphism exhibited by southern elephant seals, it is unclear whether observed differences in dive behaviour are due to increased physiological capacity of males, compared to females, or differences in activity budgets and foraging behaviour. Here we use a mixed-effects modelling approach to investigate the effects of sex, size, age and individual variation on a number of dive parameters measured on southern elephant seals from Marion Island. Although individual variation accounted for substantial portions of total model variance for many response variables, differences in maximum and targeted dive depths were always influenced by sex, and only partly by body length. Conversely, dive durations were always influenced by body length, while sex was not identified as a significant influence. These results support hypotheses that physiological capability associated with body size is a limiting factor on dive durations. However, differences in vertical depth use appear to be the result of differences in forage selection between sexes, rather than a by-product of the size dimorphism displayed by this species. This provides further support for resource partitioning and possible avoidance of inter-sexual competition in southern elephant seals.
Resumo:
The aim of this study is to assess the experience of flow and its relationship with the personality traits and the age of the adolescents. For this purpose, 224 participants of both sexes were selected, aged 12-20 years, who were examined with various tools: Flow State in adolescents (Leibovich de Figueroa; Schmidt, 2013). This is a self-report technique of 28 items that assesses the Flow State, covering all the aspects theoretically listed as components in the optimal experience of enjoyment. And a self-report Being a teenager nowadays, which evaluates 33 pairs of opposite personality characteristics that represent the personality domains of the NEO-PI-R (Costa; McCrae, 1992. Costa; McCrae, 2005, Leibovich; Schmidt, 2005). Among the found results, it was observed that in the adolescents with high scores on the scale of Flow State, the main personality trait was extroversion. Also, the influence of age on optimal flow experience appears in the chosen activities