855 resultados para Fitness landscapes
Resumo:
"1 April 1973, AFM 50-34 ... 1 July 2003, AFPAM 23-2241."
Resumo:
Claude Pepper, chairman of subcommittee.
Resumo:
Stabilizing selection has been predicted to change genetic variances and covariances so that the orientation of the genetic variance-covariance matrix (G) becomes aligned with the orientation of the fitness surface, but it is less clear how directional selection may change G. Here we develop statistical approaches to the comparison of G with vectors of linear and nonlinear selection. We apply these approaches to a set of male sexually selected cuticular hydrocarbons (CHCs) of Drosophila serrata. Even though male CHCs displayed substantial additive genetic variance, more than 99% of the genetic variance was orientated 74.9degrees away from the vector of linear sexual selection, suggesting that open-ended female preferences may greatly reduce genetic variation in male display traits. Although the orientation of G and the fitness surface were found to differ significantly, the similarity present in eigenstructure was a consequence of traits under weak linear selection and strong nonlinear ( convex) selection. Associating the eigenstructure of G with vectors of linear and nonlinear selection may provide a way of determining what long-term changes in G may be generated by the processes of natural and sexual selection.
Resumo:
Elevated plasma homocysteine is recognized as an independent risk factor for cardiovascular disease. Recently, there have been conflicting reports of the relationship between physical activity and homocysteine. A more objective measure of physical activity is cardiorespiratory fitness; however, its relationship with homocysteine has yet to be investigated. The aim of this study was to determine the relationship between cardiorespiratory fitness and plasma homocysteine. Cross-sectional associations between cardiorespiratory fitness (VO(2)max) and plasma homocysteine were examined in 49 men and 11 women. A submaximal bicycle test was used to determine VO(2)max and plasma homocysteine was measured using high performance liquid chromatography with fluorescence detection. Dietary analysis determined B vitamin intake. There was a significant inverse relationship between plasma homocysteine concentration and VO(2)max in women (r = -0.81, P = 0.003) but not in men (r = -0.09, P = 0.95). There were no significant relationships between plasma homocysteine and age, BMI, body fat, total cholesterol, and LDL cholesterol. In summary, elevated cardiorespiratory fitness is associated with decreased plasma homocysteine concentrations in women. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Coarse-resolution thematic maps derived from remotely sensed data and implemented in GIS play an important role in coastal and marine conservation, research and management. Here, we describe an approach for fine-resolution mapping of land-cover types using aerial photography and ancillary GIs and ground data in a large (100 x 35 km) subtropical estuarine system (Moreton Bay, Queensland, Australia). We have developed and implemented a classification scheme representing 24 coastal (subtidal, intertidal. mangrove, supratidal and terrestrial) cover types relevant to the ecology of estuarine animals, nekton and shorebirds. The accuracy of classifications of the intertidal and subtidal cover types, as indicated by the agreement between the mapped (predicted) and reference (ground) data, was 77-88%, depending on the zone and level of generalization required. The variability and spatial distribution of habitat mosaics (landscape types) across the mapped environment were assessed using K-means clustering and validated with Classification and Regression Tree models. Seven broad landscape types could be distinguished and ways of incorporating the information on landscape composition into site-specific conservation and field research are discussed. This research illustrates the importance and potential applications of fine-resolution mapping for conservation and management of estuarine habitats and their terrestrial and aquatic wildlife. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The theoretical impacts of anthropogenic habitat degradation on genetic resources have been well articulated. Here we use a simulation approach to assess the magnitude of expected genetic change, and review 31 studies of 23 neotropical tree species to assess whether empirical case studies conform to theory. Major differences in the sensitivity of measures to detect the genetic health of degraded populations were obvious. Most studies employing genetic diversity (nine out of 13) found no significant consequences, yet most that assessed progeny inbreeding (six out of eight), reproductive output (seven out of 10) and fitness (all six) highlighted significant impacts. These observations are in line with theory, where inbreeding is observed immediately following impact, but genetic diversity is lost slowly over subsequent generations, which for trees may take decades. Studies also highlight the ecological, not just genetic, consequences of habitat degradation that can cause reduced seed set and progeny fitness. Unexpectedly, two studies examining pollen flow using paternity analysis highlight an extensive network of gene flow at smaller spatial scales (less than 10 km). Gene flow can thus mitigate against loss of genetic diversity and assist in long-term population viability, even in degraded landscapes. Unfortunately, the surveyed studies were too few and heterogeneous to examine concepts of population size thresholds and genetic resilience in relation to life history. Future suggested research priorities include undertaking integrated studies on a range of species in the same landscapes; better documentation of the extent and duration of impact; and most importantly, combining neutral marker, pollination dynamics, ecological consequences, and progeny fitness assessment within single studies.
Resumo:
The current scale of deforestation in tropical regions and the large areas of degraded lands now present underscore the urgent need,for interventions to restore biodiversity, ecological functioning, and the supply of goods and ecological services previously used by poor rural communities. Traditional timber plantations have supplied some goods but have made only minor contributions to fulfilling most of these other objectives. New approaches to reforestation are now emerging, with potential for both overcoming forest degradation and addressing rural poverty.
Resumo:
Increasingly, large areas of native tropical forests are being transformed into a mosaic of human dominated land uses with scattered mature remnants and secondary forests. In general, at the end of the land clearing process, the landscape will have two forest components: a stable component of surviving mature forests, and a dynamic component of secondary forests of different ages. As the proportion of mature forests continues to decline, secondary forests play an increasing role in the conservation and restoration of biodiversity. This paper aims to predict and explain spatial and temporal patterns in the age of remnant mature and secondary forests in lowland Colombian landscapes. We analyse the age distributions of forest fragments, using detailed temporal land cover data derived from aerial photographs. Ordinal logistic regression analysis was applied to model the spatial dynamics of mature and secondary forest patches. In particular, the effect of soil fertility, accessibility and auto-correlated neighbourhood terms on forest age and time of isolation of remnant patches was assessed. In heavily transformed landscapes, forests account for approximately 8% of the total landscape area, of which three quarters are comprised of secondary forests. Secondary forest growth adjacent to mature forest patches increases mean patch size and core area, and therefore plays an important ecological role in maintaining landscape structure. The regression models show that forest age is positively associated with the amount of neighbouring forest, and negatively associated with the amount of neighbouring secondary vegetation, so the older the forest is the less secondary vegetation there is adjacent to it. Accessibility and soil fertility also have a negative but variable influence on the age of forest remnants. The probability of future clearing if current conditions hold is higher for regenerated than mature forests. The challenge of biodiversity conservation and restoration in dynamic and spatially heterogeneous landscape mosaics composed of mature and secondary forests is discussed. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We studied habitat selection and breeding success in marked populations of a protected seabird (family Alcidae), the marbled murrelet (Brachyramphus marmoratus), in a relatively intact and a heavily logged old-growth forest landscape in south-western Canada. Murrelets used old-growth fragments either proportionately to their size frequency distribution (intact) or they tended to nest in disproportionately smaller fragments (logged). Multiple regression modelling showed that murrelet distribution could be explained by proximity of nests to landscape features producing biotic and abiotic edge effects. Streams, steeper slopes and lower elevations were selected in both landscapes, probably due to good nesting habitat conditions and easier access to nest sites. In the logged landscape, the murrelets nested closer to recent clearcuts than would be expected. Proximity to the ocean was favoured in the intact area. The models of habitat selection had satisfactory discriminatory ability in both landscapes. Breeding success (probability of nest survival to the middle of the chick rearing period), inferred from nest attendance patterns by radio-tagged parents, was modelled in the logged landscape. Survivorship was greater in areas with recent clearcuts and lower in areas with much regrowth, i.e. it was positively correlated with recent habitat fragmentation. We conclude that marbled murrelets can successfully breed in old-growth forests fragmented by logging.