998 resultados para Fitness Surface
Resumo:
Selection pressure to obtain resistant genotypes can result in fitness cost. In this study, we report the effects of the selection pressure of a commercial formulation of Bacillus thuringiensis on biological aspects of a Dipel-resistant strain of velvetbean caterpillar, Anticarsia gemmatalis Hübner. Comparisons of Dipel-resistant and susceptible individuals revealed significant differences in pupal weight and larval development time. Both strains (Dipel-resistant and susceptible) were susceptible to Cry1Ac toxin expressed in foliar cotton tissues. Resistant and susceptible strains showed low survival rates of 22.5% and 51.2%, respectively, when fed with Greene diet containing Bt-cotton. Larvae bioassayed after three laboratory generations presented lower survival and less instar numbers than individuals maintained in the laboratory for more than 144 generations. Pupal weight was 9.4% lower and larval development time was 1.9 days longer in the resistant population than in the susceptible strain. Other parameters, such as duration of pupal stage, adult longevity, number of eggs per female, oviposition period, and egg fertility, remained unaffected.
Resumo:
Human immunodeficiency virus type 1 (HIV-1) isolates from 20 chronically infected patients who participated in a structured treatment interruption (STI) trial were studied to determine whether viral fitness influences reestablishment of viremia. Viruses derived from individuals who spontaneously controlled viremia had significantly lower in vitro replication capacities than viruses derived from individuals that did not control viremia after interruption of antiretroviral therapy (ART), and replication capacities correlated with pre-ART and post-STI viral set points. Of note, no clinically relevant improvement of viral loads upon STI occurred. Virus isolates from controlling and noncontrolling patients were indistinguishable in terms of coreceptor usage, genetic subtype, and sensitivity to neutralizing antibodies. In contrast, viruses from controlling patients exhibited increased sensitivity to inhibition by chemokines. Sensitivity to inhibition by RANTES correlated strongly with slower replication kinetics of the virus isolates, suggesting a marked dependency of these virus isolates on high coreceptor densities on the target cells. In summary, our data indicate that viral fitness is a driving factor in determining the magnitude of viral rebound and viral set point in chronic HIV-1 infection, and thus fitness should be considered as a parameter influencing the outcome of therapeutic intervention in chronic infection.
Resumo:
The set covering problem is an NP-hard combinatorial optimization problemthat arises in applications ranging from crew scheduling in airlines todriver scheduling in public mass transport. In this paper we analyze searchspace characteristics of a widely used set of benchmark instances throughan analysis of the fitness-distance correlation. This analysis shows thatthere exist several classes of set covering instances that have a largelydifferent behavior. For instances with high fitness distance correlation,we propose new ways of generating core problems and analyze the performanceof algorithms exploiting these core problems.
Resumo:
Evolutionary graph theory has been proposed as providing new fundamental rules for the evolution of co-operation and altruism. But how do these results relate to those of inclusive fitness theory? Here, we carry out a retrospective analysis of the models for the evolution of helping on graphs of Ohtsuki et al. [Nature (2006) 441, 502] and Ohtsuki & Nowak [Proc. R. Soc. Lond. Ser. B Biol. Sci (2006) 273, 2249]. We show that it is possible to translate evolutionary graph theory models into classical kin selection models without disturbing at all the mathematics describing the net effect of selection on helping. Model analysis further demonstrates that costly helping evolves on graphs through limited dispersal and overlapping generations. These two factors are well known to promote relatedness between interacting individuals in spatially structured populations. By allowing more than one individual to live at each node of the graph and by allowing interactions to vary with the distance between nodes, our inclusive fitness model allows us to consider a wider range of biological scenarios leading to the evolution of both helping and harming behaviours on graphs.
Resumo:
Adjustment of Na+ balance in extracellular fluids is achieved by regulated Na+ transport involving the amiloride-sensitive epithelial Na+ channel (ENaC) in the distal nephron. In this context, ENaC is controlled by a number of hormones, including vasopressin, which promotes rapid translocation of water and Na+ channels to the plasma membrane and long-term effects on transcription of vasopressin-induced and -reduced transcripts. We have identified a mRNA encoding the deubiquitylating enzyme ubiquitin-specific protease 10 (Usp10), whose expression is increased by vasopressin at both the mRNA and the protein level. Coexpression of Usp10 in ENaC-transfected HEK-293 cells causes a more than fivefold increase in amiloride-sensitive Na+ currents, as measured by whole cell patch clamping. This is accompanied by a three- to fourfold increase in surface expression of alpha- and gamma-ENaC, as shown by cell surface biotinylation experiments. Although ENaC is well known to be regulated by its direct ubiquitylation, Usp10 does not affect the ubiquitylation level of ENaC, suggesting an indirect effect. A two-hybrid screen identified sorting nexin 3 (SNX3) as a novel substrate of Usp10. We show that it is a ubiquitylated protein that is degraded by the proteasome; interaction with Usp10 leads to its deubiquitylation and stabilization. When coexpressed with ENaC, SNX3 increases the channel's cell surface expression, similarly to Usp10. In mCCD(cl1) cells, vasopressin increases SNX3 protein but not mRNA, supporting the idea that the vasopressin-induced Usp10 deubiquitylates and stabilizes endogenous SNX3 and consequently promotes cell surface expression of ENaC
Resumo:
To date very few studies have addressed the effects of inbreeding in social Hymenoptera, perhaps because the costs of inbreeding are generally considered marginal owing to male haploidy whereby recessive deleterious alleles are strongly exposed to selection in males. Here, we present one of the first studies on the effects of queen and worker homozygosity on colony performance. In a wild population of the ant Formica exsecta, the relative investment of single-queen colonies in sexual production decreased with increased worker homozygosity. This may either stem from increased homozygosity decreasing the likelihood of diploid brood to develop into queens or a lower efficiency of more homozygous workers at feeding larvae and thus a lower proportion of the female brood developing into queens. There was also a significant negative association between colony age and the level of queen but not worker homozygosity. This association may stem from inbreeding affecting queen lifespan and/or their fecundity, and thus colony survival. However, there was no association between queen homozygosity and colony size, suggesting that inbreeding affects colony survival as a result of inbred queens having a shorter lifespan rather than a lower fecundity. Finally, there was no significant association between either worker or queen homozygosity and the probability of successful colony founding, colony size and colony productivity, the three other traits studied. Overall, these results indicate that inbreeding depression may have important effects on colony fitness by affecting both the parental (queen) and offspring (worker)generations cohabiting within an ant colony.
Resumo:
PURPOSE: This study aimed at examining the influence of different playing surfaces on in-shoe loading patterns in each foot (back and front) separately during the first serve in tennis. METHODS: Ten competitive tennis players completed randomly five first (ie, flat) serves on two different playing surfaces: clay vs GreenSet. Maximum and mean force, peak and mean pressure, mean area, contact area and relative load were recorded by Pedar insoles divided into 9 areas for analysis. RESULTS: Mean pressure was significantly lower (123 ± 30 vs 98 ± 26 kPa; -18.5%; P < .05) on clay than on GreenSet when examining the entire back foot. GreenSet induced higher mean pressures under the medial forefoot, lateral forefoot and hallux of the back foot (+9.9%, +3.5% and +15.9%, respectively; both P < .01) in conjunction with a trend toward higher maximal forces in the back hallux (+15.1%, P = .08). Peak pressures recorded under the central and lateral forefoot (+21.8% and +25.1%; P < .05) of the front foot but also the mean area values measured on the back medial and lateral midfoot were higher (P < .05) on clay. No significant interaction between foot region and playing surface on relative load was found. CONCLUSIONS: It is suggested that in-shoe loading parameters characterizing the first serve in tennis are adjusted according to the ground type surface. A lesser asymmetry in peak (P < .01) and mean (P < .001) pressures between the two feet was found on clay, suggesting a greater need for stability on this surface.
Resumo:
Receptor activity modifying proteins RAMP1, RAMP2, and RAMP3 are responsible for defining affinity to ligands of the calcitonin receptor-like receptor (CRLR). It has also been proposed that receptor activity-modifying proteins (RAMP) are molecular chaperones required for CRLR transport to the cell surface. Here, we have studied the respective roles of CRLR and RAMP in transporting CRLR/RAMP heterodimers to the plasma membrane by using a highly specific binding assay that allows quantitative detection of cell surface-expressed CRLR or RAMP in the Xenopus oocytes expression system. We show that: (i) heterodimer assembly is not a prerequisite for efficient cell surface expression of CRLR, (ii) N-glycosylated RAMP2 and RAMP3 are expressed at the cell surface and their transport to the plasma membrane requires N-glycans, (iii) RAMP1 is not N-glycosylated and is transported to the plasma membrane only upon formation of heterodimers with CRLR, and (iv) introduction of N-glycosylation sites in the RAMP1 sequence (D58N/G60S, Y71N, and K103N/P105S) allows cell surface expression of these mutants at levels similar to that of wild-type RAMP1 co-expressed with CRLR. Our data argue against a chaperone function for RAMP and identify the role of N-glycosylation in targeting these molecules to the cell surface.
Estimation of surface roughness in a semiarid region from C-band ERS-1 synthetic aperture radar data
Resumo:
In this study, we investigated the feasibility of using the C-band European Remote Sensing Satellite (ERS-1) synthetic aperture radar (SAR) data to estimate surface soil roughness in a semiarid rangeland. Radar backscattering coefficients were extracted from a dry and a wet season SAR image and were compared with 47 in situ soil roughness measurements obtained in the rocky soils of the Walnut Gulch Experimental Watershed, southeastern Arizona, USA. Both the dry and the wet season SAR data showed exponential relationships with root mean square (RMS) height measurements. The dry C-band ERS-1 SAR data were strongly correlated (R² = 0.80), while the wet season SAR data have somewhat higher secondary variation (R² = 0.59). This lower correlation was probably provoked by the stronger influence of soil moisture, which may not be negligible in the wet season SAR data. We concluded that the single configuration C-band SAR data is useful to estimate surface roughness of rocky soils in a semiarid rangeland.
Resumo:
The European Space Agency Soil Moisture andOcean Salinity (SMOS) mission aims at obtaining global maps ofsoil moisture and sea surface salinity from space for large-scale andclimatic studies. It uses an L-band (1400–1427 MHz) MicrowaveInterferometric Radiometer by Aperture Synthesis to measurebrightness temperature of the earth’s surface at horizontal andvertical polarizations ( h and v). These two parameters will beused together to retrieve the geophysical parameters. The retrievalof salinity is a complex process that requires the knowledge ofother environmental information and an accurate processing ofthe radiometer measurements. Here, we present recent resultsobtained from several studies and field experiments that were partof the SMOS mission, and highlight the issues still to be solved.
Resumo:
The impact of topography and mixed pixels on L-band radiometric observations over land needs to be quantified to improve the accuracy of soil moisture retrievals. For this purpose, a series of simulations has been performed with an improved version of the soil moisture and ocean salinity (SMOS) end-to-end performance simulator (SEPS). The brightness temperature generator of SEPS has been modified to include a 100-m-resolution land cover map and a 30-m-resolution digital elevation map of Catalonia (northeast of Spain). This high-resolution generator allows the assessment of the errors in soil moisture retrieval algorithms due to limited spatial resolution and provides a basis for the development of pixel disaggregation techniques. Variation of the local incidence angle, shadowing, and atmospheric effects (up- and downwelling radiation) due to surface topography has been analyzed. Results are compared to brightness temperatures that are computed under the assumption of an ellipsoidal Earth.