995 resultados para Field instrumentation
Resumo:
Downscaling to station-scale hydrologic variables from large-scale atmospheric variables simulated by general circulation models (GCMs) is usually necessary to assess the hydrologic impact of climate change. This work presents CRF-downscaling, a new probabilistic downscaling method that represents the daily precipitation sequence as a conditional random field (CRF). The conditional distribution of the precipitation sequence at a site, given the daily atmospheric (large-scale) variable sequence, is modeled as a linear chain CRF. CRFs do not make assumptions on independence of observations, which gives them flexibility in using high-dimensional feature vectors. Maximum likelihood parameter estimation for the model is performed using limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization. Maximum a posteriori estimation is used to determine the most likely precipitation sequence for a given set of atmospheric input variables using the Viterbi algorithm. Direct classification of dry/wet days as well as precipitation amount is achieved within a single modeling framework. The model is used to project the future cumulative distribution function of precipitation. Uncertainty in precipitation prediction is addressed through a modified Viterbi algorithm that predicts the n most likely sequences. The model is applied for downscaling monsoon (June-September) daily precipitation at eight sites in the Mahanadi basin in Orissa, India, using the MIROC3.2 medium-resolution GCM. The predicted distributions at all sites show an increase in the number of wet days, and also an increase in wet day precipitation amounts. A comparison of current and future predicted probability density functions for daily precipitation shows a change in shape of the density function with decreasing probability of lower precipitation and increasing probability of higher precipitation.
Resumo:
We compute concurrence and negativity as measures of two-spin entanglement generated by a power-law quench (characterized by a rate tau(-1) and an exponent alpha) which takes an anisotropic XY chain in a transverse field through a quantum critical point (QCP). We show that only spins separated by an even number of lattice spacings get entangled in such a process. Moreover, there is a critical rate of quench, tau(-1)(c), above which no two-spin entanglement is generated; the entire entanglement is multipartite. The ratio of the entanglements between consecutive even neighbors can be tuned by changing the quench rate. We also show that for large tau, the concurrence (negativity) scales as root alpha/tau(alpha/tau), and we relate this scaling behavior to defect production by the quench through a QCP.
Resumo:
The electrical and optical response of a field-effect device comprising a network of semiconductor-enriched single-wall carbon nanotubes, gated with sodium chloride solution is investigated. Field-effect is demonstrated in a device that uses facile fabrication techniques along with a small-ion as the gate electrolyte-and this is accomplished as a result of the semiconductor enhancement of the tubes. The optical transparency and electrical resistance of the device are modulated with gate voltage. A time-response study of the modulation of optical transparency and electrical resistance upon application of gate voltage suggests the percolative charge transport in the network. Also the ac response in the network is investigated as a function of frequency and temperature down to 5 K. An empirical relation between onset frequency and temperature is determined.
Resumo:
Qualitative and quantitative assessment of the fungal flora of rice field soils yielded 102 species of fungi belonging to 44 genera, when dilution plate, soil plate, root-washing and baiting techniques were employed. The order of efficacy of the methods used was: root-washing > soil plate > dilution plate > baiting. Baiting method, used specifically to isolate aquatic and keratinophilic fungi from soils was studied in detail with reference to the former. Qualitatively, corn leaf bait was the most efficient one while pine pollens and hemp seeds were least efficient. A semi-quantitative method was employed to study the statistically significant differences among the different factors used. Among the keratinophilic baits,viz., human hair, fowl’s feather and wool, wool bait was least efficient. The results of this investigation are discussed.
Resumo:
An experimental system was developed for assessing the role ofhetgenes in heterokaryon formation inNeurosporain nature. Burned sugar cane segments planted in soil were infected using a mixture of mutant ascospores of two genotypes.Neurosporaramified in the cane and erupted as distinct pustules of conidia. When ascospores carried identicalhetalleles, the (macro) conidial pustules which formed were heterokaryotic. On the other hand, when ascospores carried dissimilarhetalleles, the pustules were homokaryotic. These results showed that stable heterokaryons between compatible strains can form in nature. When two strains are growing together on a natural substrate, heterozygosity athetloci serves to maintain their individuality.
Resumo:
A modal analysis and near-field study for a dielectric-coated conducting sphere excited by a delta function electric field source has been made. The structure can support an infinite number of modes theoretically. For equatorial excitation only odd order modes are excited, whereas for non-equatorial excitation both even and odd order modes are excited. The variation of the amplitude coefficients both internal and external exhibit a different nature of variation with respect to the various structure parameters for different modes. The field distributions both in the r and theta directions for non-equatorial excitation show good agreement between theory and experiment for the strongest mode.
Resumo:
Little is known about beginning teachers’ political positioning experiences of the staffroom. This paper employs Bourdieu's conceptual tools of field, habitus and capital to explore beginning health and physical education teachers’ positioning experiences and learning in staffrooms, the place in which teachers spend the majority of their non-teaching school time. From an Australian context, we present beginning (or emerging) teachers’ stories from one rural general staffroom and one urban departmental staffroom. Using the narratives we reflect upon how their positioning in the politics of the staffroom as beginning teachers presented significant challenges including negotiating the professional micropolitics, negotiating capital and negotiating opportunities and risks for reflection and change in contrasting social spaces.
Resumo:
The overall aim of this dissertation was to study the public's preferences for forest regeneration fellings and field afforestations, as well as to find out the relations of these preferences to landscape management instructions, to ecological healthiness, and to the contemporary theories for predicting landscape preferences. This dissertation includes four case studies in Finland, each based on the visualization of management options and surveys. Guidelines for improving the visual quality of forest regeneration and field afforestation are given based on the case studies. The results show that forest regeneration can be connected to positive images and memories when the regeneration area is small and some time has passed since the felling. Preferences may not depend only on the management alternative itself but also on the viewing distance, viewing point, and the scene in which the management options are implemented. The current Finnish forest landscape management guidelines as well as the ecological healthiness of the studied options are to a large extent compatible with the public's preferences. However, there are some discrepancies. For example, the landscape management instructions as well as ecological hypotheses suggest that the retention trees need to be left in groups, whereas people usually prefer individually located retention trees to those trees in groups. Information and psycho-evolutionary theories provide some possible explanations for people's preferences for forest regeneration and field afforestation, but the results cannot be consistently explained by these theories. The preferences of the different stakeholder groups were very similar. However, the preference ratings of the groups that make their living from forest - forest owners and forest professionals - slightly differed from those of the others. These results provide support for the assumptions that preferences are largely consistent at least within one nation, but that knowledge and a reference group may also influence preferences.
Resumo:
The flow, heat and mass transfer problem for boundary layer swirling flow of a laminar steady compressible electrically conducting gas with variable properties through a conical nozzle and a diffuser with an applied magnetic field has been studied. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme after they have been transformed into dimensionless form using the modified Lees transformation. The results indicate that the skin friction and heat transfer strongly depend on the magnetic field, mass transfer and variation of the density-viscosity product across the boundary layer. However, the effect of the variation of the density-viscosity product is more pronounced in the case of a nozzle than in the case of a diffuser. It has been found that large swirl is required to produce strong effect on the skin friction and heat transfer. Separationless flow along the entire length of the diffuser can be obtained by applying appropriate amount of suction. The results are found to be in good agreement with those of the local nonsimilarity method, but they differ quite significantly from those of the local similarity method.
Resumo:
The steady MHD mixed convection flow of a viscoelastic fluid in the vicinity of two-dimensional stagnation point with magnetic field has been investigated under the assumption that the fluid obeys the upper-convected Maxwell (UCM) model. Boundary layer theory is used to simplify the equations of motion. induced magnetic field and energy which results in three coupled non-linear ordinary differential equations which are well-posed. These equations have been solved by using finite difference method. The results indicate the reduction in the surface velocity gradient, surface heat transfer and displacement thickness with the increase in the elasticity number. These trends are opposite to those reported in the literature for a second-grade fluid. The surface velocity gradient and heat transfer are enhanced by the magnetic and buoyancy parameters. The surface heat transfer increases with the Prandtl number, but the surface velocity gradient decreases.
Resumo:
The influence of electric field and temperature on power consumption of piezoelectric actuated integrated structure is studied by using a single degree of freedom mass-spring-damper system model coupled with a piezoactuator. The material lead zirconate titanate, is considered as it is capable of producing relatively high strains (e.g., 3000 mu epsilon). Actuators are often subject to high electric fields to increase the induced strain produced, resulting in field dependant piezoelectric coefficient d(31), dielectric coefficient epsilon(33) and dissipation factor delta. Piezostructures are also likely to be used across a wide range of temperatures in aerospace and undersea operations. Again, the piezoelectric properties can vary with temperature. Recent experimental studies by physics researchers have looked at the effect of high electric field and temperature on piezoelectric properties. These properties are used together with an impedance based power consumption model. Results show that including the nonlinear variation of dielectric permittivity and dissipation factor with electric field is important. Temperature dependence of the dielectric constant also should be considered.
Resumo:
We have evaluated techniques of estimating animal density through direct counts using line transects during 1988-92 in the tropical deciduous forests of Mudumalai Sanctuary in southern India for four species of large herbivorous mammals, namely, chital (Axis axis), sambar (Cervus unicolor), Asian elephant (Elephas maximus) and gaur (Bos gauras). Density estimates derived from the Fourier Series and the Half-Normal models consistently had the lowest coefficient of variation. These two models also generated similar mean density estimates. For the Fourier Series estimator, appropriate cut-off widths for analysing line transect data for the four species are suggested. Grouping data into various distance classes did not produce any appreciable differences in estimates of mean density or their variances, although model fit is generally better when data are placed in fewer groups. The sampling effort needed to achieve a desired precision (coefficient of variation) in the density estimate is derived. A sampling effort of 800 km of transects returned a 10% coefficient of variation on estimate for chital; for the other species a higher effort was needed to achieve this level of precision. There was no statistically significant relationship between detectability of a group and the size of the group for any species. Density estimates along roads were generally significantly different from those in the interior af the forest, indicating that road-side counts may not be appropriate for most species.
Resumo:
Biosensors have gained immense acceptance in the field of medical diagnostics, besides environmental, food safety and biodefence applications due to its attributes of real-time and rapid response. This synergistic combination of biotechnology and microelectronics comprises a biological recognition element coupled with a compatible transducer device. Diabetes is a disease of major concern since the ratio of world population suffering from it is increasing at an alarming rate and therefore the need for development of accurate and stable glucose biosensors is evident. There are many commercial glucose biosensors available yet some limitations need attention. This review presents a detailed account of the polypyrrole based amperometric glucose biosensors. The polymer polypyrrole is used extensively as a matrix for immobilization of glucose oxidase enzyme owing to its favourable features such as stability under ambient conditions, conductivity that allows it to be used as an electron relay, ability to be polymerized under neutral and aqueous mild conditions, and more. The simple one-step electrodeposition on the electrode surface allows easy entrapment of the enzyme. The review is structured into three categories (a) the first-stage biosensors: which report the studies from the inception of use of polypyrrole in glucose biosensors during which time the role of the polymer and the use of mediators was established. This period saw extensive work by two separate groups of Schuhmann and Koopal who contributed a great deal in understanding the electron transfer pathways in polypyrrole based glucose biosensors, (b) the second-stage biosensors: which highlight the shift of polypyrrole from a conventional matrix to composite matrices with extensive use of mediators focused at improving the selectivity of response, and (c) third-stage biosensors: the remarkable properties of nanoparticles and carbon nanotubes and their outstanding ability to mediate electrontransfers have seen their indispensable use in conjugation with polypyrrole for development of glucose biosensors with improved sensitivity and stability characteristics which is accounted in the review, which thus traces the evolution of polypyrrole from a conventional matrix, to composites and thence to the form of nanotube arrays, with the objective of addressing the vital issue of diabetes management through the development of stable and reliable glucose biosensors.
Resumo:
It has been found experimentally that the results related to the collective field emission performance of carbon nanotube (CNT) arrays show variability. The emission performance depends on the electronic structure of CNTs (especially their tips). Due to limitations in the synthesis process, production of highly pure and defect free CNTs is very difficult. The presence of defects and impurities affects the electronic structure of CNTs. Therefore, it is essential to analyze the effect of defects on the electronic structure, and hence, the field emission current. In this paper, we develop a modeling approach for evaluating the effect of defects and impurities on the overall field emission performance of a CNT array. We employ a concept of effective stiffness degradation for segments of CNTs, which is due to structural defects. Then, we incorporate the vacancy defects and charge impurity effects in our Green's function based approach. Simulation results indicate decrease in average current due to the presence of such defects and impurities.